Search results
Results from the WOW.Com Content Network
The differential geometry of surfaces is concerned with a mathematical understanding of such phenomena. The study of this field, which was initiated in its modern form in the 1700s, has led to the development of higher-dimensional and abstract geometry, such as Riemannian geometry and general relativity .
Download as PDF; Printable version; In other projects Wikidata item; Appearance. ... Differential geometry of curves and surfaces. Differential geometry of curves
Let p be a point on a smooth surface M. The geodesic circle of radius r centered at p is the set of all points whose geodesic distance from p is equal to r. Let C(r) denote the circumference of this circle, and A(r) denote the area of the disc contained within the circle. The Bertrand–Diguet–Puiseux theorem asserts that
The Weingarten equations give the expansion of the derivative of the unit normal vector to a surface in terms of the first derivatives of the position vector of a point on the surface. These formulas were established in 1861 by the German mathematician Julius Weingarten .
Saddle surface with normal planes in directions of principal curvatures. In differential geometry, the two principal curvatures at a given point of a surface are the maximum and minimum values of the curvature as expressed by the eigenvalues of the shape operator at that point. They measure how the surface bends by different amounts in ...
In differential geometry, the Gauss map of a surface is a function that maps each point in the surface to a unit vector that is orthogonal to the surface at that point. Namely, given a surface X in Euclidean space R 3 , the Gauss map is a map N : X → S 2 (where S 2 is the unit sphere ) such that for each p in X , the function value N ( p ) is ...
Thus the Gaussian curvature is an intrinsic invariant of a surface. Gauss presented the theorem in this manner (translated from Latin): Thus the formula of the preceding article leads itself to the remarkable Theorem. If a curved surface is developed upon any other surface whatever, the measure of curvature in each point remains unchanged.
In differential geometry, the first fundamental form is the inner product on the tangent space of a surface in three-dimensional Euclidean space which is induced canonically from the dot product of R 3. It permits the calculation of curvature and metric properties of a surface such as length and area in a manner consistent with the ambient space.