Search results
Results from the WOW.Com Content Network
Standard solutions are generally prepared by dissolving a solute of known mass into a solvent to a precise volume, or by diluting a solution of known concentration with more solvent. [1] A standard solution ideally has a high degree of purity and is stable enough that the concentration can be accurately measured after a long shelf time. [2]
The analytical (total) concentration of a reactant R at the i th titration point is given by = + [] + where R 0 is the initial amount of R in the titration vessel, v 0 is the initial volume, [R] is the concentration of R in the burette and v i is the volume added. The burette concentration of a reactant not present in the burette is taken to be ...
In chemistry, the law of mass action is the proposition that the rate of a chemical reaction is directly proportional to the product of the activities or concentrations of the reactants. [1] It explains and predicts behaviors of solutions in dynamic equilibrium .
The law of mass action is applied to the ionization of water and the dissociation of acid to derived the first and second equations. The mass balance is used in the third equation, where the sum of V [ HA ] {\displaystyle V[{\ce {HA}}]} and V [ A − ] {\displaystyle V[{\ce {A-}}]} must equal to the number of moles of dissolved acid and base ...
A set of communicating vessels Animation showing the filling of communicating vessels. Communicating vessels or communicating vases [1] are a set of containers containing a homogeneous fluid and connected sufficiently far below the top of the liquid: when the liquid settles, it balances out to the same level in all of the containers regardless of the shape and volume of the containers.
Conductometry has notable application in analytical chemistry, where conductometric titration is a standard technique. In usual analytical chemistry practice, the term conductometry is used as a synonym of conductometric titration while the term conductimetry is used to describe non-titrative applications. [ 1 ]
For a strong acid-strong base titration monitored by pH, we have at any i'th point in the titration = [+] [] where K w is the water autoprotolysis constant.. If titrating an acid of initial volume and concentration [+] with base of concentration [], then at any i'th point in the titration with titrant volume ,
Guldberg and Waage. Peter Waage (29 June 1833 – 13 January 1900) was a Norwegian chemist and professor of chemistry at the University of Kristiania. Along with his brother-in-law Cato Maximilian Guldberg, he co-discovered and developed the law of mass action between 1864 and 1879.