Search results
Results from the WOW.Com Content Network
In number theory, a branch of mathematics, Ramanujan's ternary quadratic form is the algebraic expression x 2 + y 2 + 10z 2 with integral values for x, y and z. [ 1 ] [ 2 ] Srinivasa Ramanujan considered this expression in a footnote in a paper [ 3 ] published in 1916 and briefly discussed the representability of integers in this form.
The catalecticant of a ternary quartic is the resultant of its 6 second partial derivatives. It vanishes when the ternary quartic can be written as a sum of five 4th powers of linear forms. See also
A mapping q : M → R : v ↦ b(v, v) is the associated quadratic form of b, and B : M × M → R : (u, v) ↦ q(u + v) − q(u) − q(v) is the polar form of q. A quadratic form q : M → R may be characterized in the following equivalent ways: There exists an R-bilinear form b : M × M → R such that q(v) is the associated quadratic form.
By definition, a quadric X of dimension n over a field k is the subspace of + defined by q = 0, where q is a nonzero homogeneous polynomial of degree 2 over k in variables , …, +. (A homogeneous polynomial is also called a form , and so q may be called a quadratic form .)
Ramanujan's ternary quadratic form; S. Signature (topology) Smith–Minkowski–Siegel mass formula; Spinor genus; Quadratic form (statistics) Surgery structure set;
This is an accepted version of this page This is the latest accepted revision, reviewed on 8 January 2025. German mathematician, astronomer, geodesist, and physicist (1777–1855) "Gauss" redirects here. For other uses, see Gauss (disambiguation). Carl Friedrich Gauss Portrait by Christian Albrecht Jensen, 1840 (copy from Gottlieb Biermann, 1887) Born Johann Carl Friedrich Gauss (1777-04-30 ...
The study of real, quadratic algebras shows the distinction between types of quadratic forms. The product zz* is a quadratic form for each of the complex numbers, split-complex numbers, and dual numbers. For z = x + ε y, the dual number form is x 2 which is a degenerate quadratic form. The split-complex case is an isotropic form, and the ...
An integral quadratic form is a quadratic form on Z n, or equivalently a free Z-module of finite rank. Two such forms are in the same genus if they are equivalent over the local rings Z p for each prime p and also equivalent over R .