Search results
Results from the WOW.Com Content Network
In number theory, a branch of mathematics, Ramanujan's ternary quadratic form is the algebraic expression x 2 + y 2 + 10z 2 with integral values for x, y and z. [ 1 ] [ 2 ] Srinivasa Ramanujan considered this expression in a footnote in a paper [ 3 ] published in 1916 and briefly discussed the representability of integers in this form.
An integral quadratic form has integer coefficients, such as x 2 + xy + y 2; equivalently, given a lattice Λ in a vector space V (over a field with characteristic 0, such as Q or R), a quadratic form Q is integral with respect to Λ if and only if it is integer-valued on Λ, meaning Q(x, y) ∈ Z if x, y ∈ Λ.
Ramanujan's ternary quadratic form; S. ... Quadratic form (statistics) Surgery structure set; Sylvester's law of inertia; T. Tensor product of quadratic forms; U. U ...
An integral quadratic form is a quadratic form on Z n, or equivalently a free Z-module of finite rank. Two such forms are in the same genus if they are equivalent over the local rings Z p for each prime p and also equivalent over R .
This glossary of biology terms is a list of definitions of fundamental terms and concepts used in biology, the study of life and of living organisms.It is intended as introductory material for novices; for more specific and technical definitions from sub-disciplines and related fields, see Glossary of cell biology, Glossary of genetics, Glossary of evolutionary biology, Glossary of ecology ...
The oldest problem in the theory of binary quadratic forms is the representation problem: describe the representations of a given number by a given quadratic form f. "Describe" can mean various things: give an algorithm to generate all representations, a closed formula for the number of representations, or even just determine whether any ...
In mathematics, a definite quadratic form is a quadratic form over some real vector space V that has the same sign (always positive or always negative) for every non-zero vector of V. According to that sign, the quadratic form is called positive-definite or negative-definite .
In mathematics, a quadric or quadric surface (quadric hypersurface in higher dimensions), is a generalization of conic sections (ellipses, parabolas, and hyperbolas).It is a hypersurface (of dimension D) in a (D + 1)-dimensional space, and it is defined as the zero set of an irreducible polynomial of degree two in D + 1 variables; for example, D = 1 in the case of conic sections.