Search results
Results from the WOW.Com Content Network
Mathematical definition [ edit ] A diffusion process is a Markov process with continuous sample paths for which the Kolmogorov forward equation is the Fokker–Planck equation .
William Feller, in 1949, used the names "forward equation" and "backward equation" for his more general version of the Kolmogorov's pair, in both jump and diffusion processes. [1] Much later, in 1956, he referred to the equations for the jump process as "Kolmogorov forward equations" and "Kolmogorov backward equations". [3]
where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...
The Fokker–Planck equation has multiple applications in information theory, graph theory, data science, finance, economics etc. It is named after Adriaan Fokker and Max Planck, who described it in 1914 and 1917. [2] [3] It is also known as the Kolmogorov forward equation, after Andrey Kolmogorov, who independently discovered it in 1931. [4]
In chemistry, the rate equation (also known as the rate law or empirical differential rate equation) is an empirical differential mathematical expression for the reaction rate of a given reaction in terms of concentrations of chemical species and constant parameters (normally rate coefficients and partial orders of reaction) only. [1]
Informally, the Kolmogorov forward equation addresses the following problem. We have information about the state x of the system at time t (namely a probability distribution p t ( x ) {\displaystyle p_{t}(x)} ); we want to know the probability distribution of the state at a later time s > t {\displaystyle s>t} .
As an example, consider the gas-phase reaction NO 2 + CO → NO + CO 2.If this reaction occurred in a single step, its reaction rate (r) would be proportional to the rate of collisions between NO 2 and CO molecules: r = k[NO 2][CO], where k is the reaction rate constant, and square brackets indicate a molar concentration.
In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates.The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 1884 that the van 't Hoff equation for the temperature dependence of equilibrium constants suggests such a formula for the rates of both forward and ...