enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Equilibrant force - Wikipedia

    en.wikipedia.org/wiki/Equilibrant_Force

    Because the angle of the equilibrant force is opposite of the resultant force, if 180 degrees are added or subtracted to the resultant force's angle, the equilibrant force's angle will be known. Multiplying the resultant force vector by a -1 will give the correct equilibrant force vector: <-10, -8>N x (-1) = <10, 8>N = C.

  3. Free body diagram - Wikipedia

    en.wikipedia.org/wiki/Free_body_diagram

    In physics and engineering, a free body diagram (FBD; also called a force diagram) [1] is a graphical illustration used to visualize the applied forces, moments, and resulting reactions on a free body in a given condition. It depicts a body or connected bodies with all the applied forces and moments, and reactions, which act on the body(ies).

  4. Couple (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Couple_(mechanics)

    A single force acting at any point O′ of a rigid body can be replaced by an equal and parallel force F acting at any given point O and a couple with forces parallel to F whose moment is M = Fd, d being the separation of O and O′. Conversely, a couple and a force in the plane of the couple can be replaced by a single force, appropriately ...

  5. Mechanical equilibrium - Wikipedia

    en.wikipedia.org/wiki/Mechanical_equilibrium

    A stationary object (or set of objects) is in "static equilibrium," which is a special case of mechanical equilibrium. A paperweight on a desk is an example of static equilibrium. Other examples include a rock balance sculpture, or a stack of blocks in the game of Jenga, so long as the sculpture or stack of blocks is not in the state of collapsing.

  6. Structural engineering theory - Wikipedia

    en.wikipedia.org/wiki/Structural_engineering_theory

    Newton's second law states that the rate of change of momentum of a body is proportional to the resultant force acting on the body and is in the same direction. Mathematically, F=ma (force = mass x acceleration). Newton's third law states that all forces occur in pairs, and these two forces are equal in magnitude and opposite in direction.

  7. Statics - Wikipedia

    en.wikipedia.org/wiki/Statics

    Diagram of the moment arm of a force F. The magnitude of the moment of a force at a point O, is equal to the perpendicular distance from O to the line of action of F, multiplied by the magnitude of the force: M = F · d, where F = the force applied d = the perpendicular distance from the axis to the line of action of the force. This ...

  8. Statically indeterminate - Wikipedia

    en.wikipedia.org/wiki/Statically_indeterminate

    In statics and structural mechanics, a structure is statically indeterminate when the equilibrium equations – force and moment equilibrium conditions – are insufficient for determining the internal forces and reactions on that structure. [1] [2]

  9. Moment (physics) - Wikipedia

    en.wikipedia.org/wiki/Moment_(physics)

    The moment of force, or torque, is a first moment: =, or, more generally, .; Similarly, angular momentum is the 1st moment of momentum: =.Momentum itself is not a moment.; The electric dipole moment is also a 1st moment: = for two opposite point charges or () for a distributed charge with charge density ().