enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    The precise strength of Earth's gravity varies with location. The agreed-upon value for standard gravity is 9.80665 m/s 2 (32.1740 ft/s 2) by definition. [4] This quantity is denoted variously as gn, ge (though this sometimes means the normal gravity at the equator, 9.7803267715 m/s 2 (32.087686258 ft/s 2)), [5] g0, or simply g (which is also ...

  3. Gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gravitational_constant

    Cavendish's stated aim was the "weighing of Earth", that is, determining the average density of Earth and the Earth's mass. His result, ρ 🜨 = 5.448(33) g⋅cm −3, corresponds to value of G = 6.74(4) × 10 −11 m 3 ⋅kg −1 ⋅s −2. It is surprisingly accurate, about 1% above the modern value (comparable to the claimed relative ...

  4. Earth mass - Wikipedia

    en.wikipedia.org/wiki/Earth_mass

    The Earth mass is a standard unit of mass in astronomy that is used to indicate the masses of other planets, including rocky terrestrial planets and exoplanets. One Solar mass is close to 333 000 Earth masses. The Earth mass excludes the mass of the Moon. The mass of the Moon is about 1.2% of that of the Earth, so that the mass of the Earth ...

  5. Mass versus weight - Wikipedia

    en.wikipedia.org/wiki/Mass_versus_weight

    The mass of an object is a measure of the object’s inertial property, or the amount of matter it contains. The weight of an object is a measure of the force exerted on the object by gravity, or the force needed to support it. The pull of gravity on the earth gives an object a downward acceleration of about 9.8 m/s 2.

  6. Standard gravity - Wikipedia

    en.wikipedia.org/wiki/Standard_gravity

    Standard gravity. The standard acceleration of gravity or standard acceleration of free fall, often called simply standard gravity and denoted by É¡0 or É¡n, is the nominal gravitational acceleration of an object in a vacuum near the surface of the Earth. It is a constant defined by standard as 9.806 65 m/s 2 (about 32.174 05 ft/s 2).

  7. g-force - Wikipedia

    en.wikipedia.org/wiki/G-force

    One g is the force per unit mass due to gravity at the Earth's surface and is the standard gravity (symbol: g n), defined as 9.806 65 metres per second squared, [5] or equivalently 9.806 65 newtons of force per kilogram of mass.

  8. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    At a fixed point on the surface, the magnitude of Earth's gravity results from combined effect of gravitation and the centrifugal force from Earth's rotation. [2] [3] At different points on Earth's surface, the free fall acceleration ranges from 9.764 to 9.834 m/s 2 (32.03 to 32.26 ft/s 2), [4] depending on altitude, latitude, and longitude.

  9. Kilogram-force - Wikipedia

    en.wikipedia.org/wiki/Kilogram-force

    [citation needed] The kilogram-force is equal to the magnitude of the force exerted on one kilogram of mass in a 9.806 65 m/s 2 gravitational field (standard gravity, a conventional value approximating the average magnitude of gravity on Earth). [2] That is, it is the weight of a kilogram under standard gravity.