Search results
Results from the WOW.Com Content Network
In normal unweighted samples, the N in the denominator (corresponding to the sample size) is changed to N − 1 (see Bessel's correction). In the weighted setting, there are actually two different unbiased estimators, one for the case of frequency weights and another for the case of reliability weights.
Unweighted, or "elementary", price indices only compare prices of a single type of good between two periods. They do not make any use of quantities or expenditure weights. They are called "elementary" because they are often used at the lower levels of aggregation for more comprehensive price indices. [2]
Weighted least squares (WLS), also known as weighted linear regression, [1] [2] is a generalization of ordinary least squares and linear regression in which knowledge of the unequal variance of observations (heteroscedasticity) is incorporated into the regression.
Linear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals.
The time-weighted rate of return measures how your investments have performed in a vacuum. Basically, for the assets that you purchased, it determines how much have they gained or lost value.
The result of this application of a weight function is a weighted sum or weighted average. Weight functions occur frequently in statistics and analysis, and are closely related to the concept of a measure. Weight functions can be employed in both discrete and continuous settings.
The lower weighted median is 2 with partition sums of 0.49 and 0.5, and the upper weighted median is 3 with partition sums of 0.5 and 0.25. In the case of working with integers or non-interval measures, the lower weighted median would be accepted since it is the lower weight of the pair and therefore keeps the partitions most equal. However, it ...
These applications codified the theory of other statistics and estimators such as marginal structural models, the standardized mortality ratio, and the EM algorithm for coarsened or aggregate data. Inverse probability weighting is also used to account for missing data when subjects with missing data cannot be included in the primary analysis. [4]