enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions.Assuming constant acceleration g due to Earth's gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth's gravitational field of strength g.

  3. Free fall - Wikipedia

    en.wikipedia.org/wiki/Free_fall

    In classical mechanics, free fall is any motion of a body where gravity is the only force acting upon it. A freely falling object may not necessarily be falling down in the vertical direction. If the common definition of the word "fall" is used, an object moving upwards is not considered to be falling, but using scientific definitions, if it is ...

  4. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    This model represents the "far-field" gravitational acceleration associated with a massive body. When the dimensions of a body are not trivial compared to the distances of interest, the principle of superposition can be used for differential masses for an assumed density distribution throughout the body in order to get a more detailed model of ...

  5. Specific force - Wikipedia

    en.wikipedia.org/wiki/Specific_force

    For free bodies, the specific force is the cause of, and a measure of, the body's proper acceleration. The acceleration of an object free falling towards the earth depends on the reference frame (it disappears in the free-fall frame, also called the inertial frame), but any g-force "acceleration" will be present in all frames.

  6. Galileo's law of odd numbers - Wikipedia

    en.wikipedia.org/wiki/Galileo's_law_of_odd_numbers

    In classical mechanics and kinematics, Galileo's law of odd numbers states that the distance covered by a falling object in successive equal time intervals is linearly proportional to the odd numbers. That is, if a body falling from rest covers a certain distance during an arbitrary time interval, it will cover 3, 5, 7, etc. times that distance ...

  7. Standard gravity - Wikipedia

    en.wikipedia.org/wiki/Standard_gravity

    The standard acceleration of gravity or standard acceleration of free fall, often called simply standard gravity and denoted by ɡ 0 or ɡ n, is the nominal gravitational acceleration of an object in a vacuum near the surface of the Earth. It is a constant defined by standard as 9.806 65 m/s 2 (about 32.174 05 ft/s 2).

  8. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    Near Earth's surface, the acceleration due to gravity, accurate to 2 significant figures, is 9.8 m/s 2 (32 ft/s 2). This means that, ignoring the effects of air resistance, the speed of an object falling freely will increase by about 9.8 metres per second (32 ft/s) every second.

  9. Equivalence principle - Wikipedia

    en.wikipedia.org/wiki/Equivalence_principle

    Instead, the weak equivalence principle assumes falling bodies are self-bound by non-gravitational forces only (e.g. a stone). Either way: "All uncharged, freely falling test particles follow the same trajectories, once an initial position and velocity have been prescribed". [8]: 6