enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lorentz factor - Wikipedia

    en.wikipedia.org/wiki/Lorentz_factor

    Definition of the Lorentz factor γ. The Lorentz factor or Lorentz term (also known as the gamma factor [1]) is a dimensionless quantity expressing how much the measurements of time, length, and other physical properties change for an object while it moves. The expression appears in several equations in special relativity, and it arises in ...

  3. List of relativistic equations - Wikipedia

    en.wikipedia.org/wiki/List_of_relativistic_equations

    The following notations are used very often in special relativity: Lorentz factor = where = and v is the relative velocity between two inertial frames.. For two frames at rest, γ = 1, and increases with relative velocity between the two inertial frames.

  4. List of common physics notations - Wikipedia

    en.wikipedia.org/wiki/List_of_common_physics...

    SI unit of measure alpha: alpha particle: angular acceleration: radian per second squared (rad/s 2) fine-structure constant: unitless beta: velocity in terms of the speed of light c: unitless beta particle: gamma: Lorentz factor: unitless photon: gamma ray: shear strain: radian heat capacity ratio

  5. Heaviside–Lorentz units - Wikipedia

    en.wikipedia.org/wiki/Heaviside–Lorentz_units

    Heaviside–Lorentz units, like the Gaussian CGS units by which they generally differ by a factor of about 3.5, are frequently of rather inconvenient sizes. The ampere (coulomb/second) is reasonable unit for measuring currents commonly encountered, but the ESU/s, as demonstrated above, is far too small.

  6. Time dilation - Wikipedia

    en.wikipedia.org/wiki/Time_dilation

    Lorentz factor as a function of speed (in natural units where c = 1). Notice that for small speeds (as v tends to zero), γ is approximately 1. In addition to the light clock used above, the formula for time dilation can be more generally derived from the temporal part of the Lorentz transformation. [28]

  7. Ultrarelativistic limit - Wikipedia

    en.wikipedia.org/wiki/Ultrarelativistic_limit

    Below are few ultrarelativistic approximations when .The rapidity is denoted : ⁡ Motion with constant proper acceleration: d ≈ e aτ /(2a), where d is the distance traveled, a = dφ/dτ is proper acceleration (with aτ ≫ 1), τ is proper time, and travel starts at rest and without changing direction of acceleration (see proper acceleration for more details).

  8. Classical electromagnetism and special relativity - Wikipedia

    en.wikipedia.org/wiki/Classical_electromagnetism...

    is called the Lorentz factor and c is the speed of light in free space. Lorentz factor (γ) is the same in both systems. The inverse transformations are the same except for the substitution v → −v. An equivalent, alternative expression is: [3]

  9. Spacetime diagram - Wikipedia

    en.wikipedia.org/wiki/Spacetime_diagram

    where = is the Lorentz factor. By applying the Lorentz transformation, the spacetime axes obtained for a boosted frame will always correspond to conjugate diameters of a pair of hyperbolas. As illustrated in Fig 2-3, the boosted and unboosted spacetime axes will in general have unequal unit lengths.