enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Birkeland current - Wikipedia

    en.wikipedia.org/wiki/Birkeland_current

    Schematic of the Birkeland or Field-Aligned Currents and the ionospheric current systems they connect to, Pedersen and Hall currents. [1] A Birkeland current (also known as field-aligned current, FAC) is a set of electrical currents that flow along geomagnetic field lines connecting the Earth's magnetosphere to the Earth's high latitude ionosphere.

  3. Ring current - Wikipedia

    en.wikipedia.org/wiki/Ring_current

    The ring current system consists of a band, at a distance of 3 to 8 R E, [1] which lies in the equatorial plane and circulates clockwise around the Earth (when viewed from the north). The particles of this region produce a magnetic field in opposition to the Earth's magnetic field and so an Earthly observer would observe a decrease in the ...

  4. Ionospheric dynamo region - Wikipedia

    en.wikipedia.org/wiki/Ionospheric_dynamo_region

    In the height region between about 85 and 200 km altitude on Earth, the ionospheric plasma is electrically conducting. Atmospheric tidal winds due to differential solar heating or due to gravitational lunar forcing move the ionospheric plasma against the geomagnetic field lines thus generating electric fields and currents just like a dynamo coil moving against magnetic field lines.

  5. Dynamo theory - Wikipedia

    en.wikipedia.org/wiki/Dynamo_theory

    If the magnetic field does grow, then the system is either capable of dynamo action or is a dynamo, but if the magnetic field does not grow, then it is simply referred to as “not a dynamo”. An analogous method called the membrane paradigm is a way of looking at black holes that allows for the material near their surfaces to be expressed in ...

  6. Magnetosphere particle motion - Wikipedia

    en.wikipedia.org/wiki/Magnetosphere_particle_motion

    Schematic view of the different current systems which shape the Earth's magnetosphere Trapping of plasma , e.g. of the ring current , also follows the structure of field lines. A particle interacting with this B field experiences a Lorentz Force which is responsible for many of the particle motion in the magnetosphere.

  7. Stellar magnetic field - Wikipedia

    en.wikipedia.org/wiki/Stellar_magnetic_field

    The coolest of these, 2MASS J10475385+2124234 with a temperature of 800-900 K, retains a magnetic field stronger than 1.7 kG, making it some 3000 times stronger than the Earth's magnetic field. [18] Radio observations also suggest that their magnetic fields periodically change their orientation, similar to the Sun during the solar cycle. [19]

  8. Earth's magnetic field - Wikipedia

    en.wikipedia.org/wiki/Earth's_magnetic_field

    This current reduces the magnetic field at the Earth's surface. [27] Particles that penetrate the ionosphere and collide with the atoms there give rise to the lights of the aurorae while also emitting X-rays. [28] The varying conditions in the magnetosphere, known as space weather, are largely driven by solar

  9. Heliospheric current sheet - Wikipedia

    en.wikipedia.org/wiki/Heliospheric_current_sheet

    The heliospheric current sheet rotates along with the Sun with a period of about 25 days, during which time the peaks and troughs of the skirt pass through the Earth's magnetosphere, interacting with it. Near the surface of the Sun, the magnetic field produced by the radial electric current in the sheet is of the order of 5 × 10 −6 T. [2]