enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convergent series - Wikipedia

    en.wikipedia.org/wiki/Convergent_series

    A series is convergent (or converges) if and only if the sequence of its partial sums tends to a limit; that means that, when adding one after the other in the order given by the indices, one gets partial sums that become closer and closer to a given number.

  3. Divergent series - Wikipedia

    en.wikipedia.org/wiki/Divergent_series

    N. H. Abel, letter to Holmboe, January 1826, reprinted in volume 2 of his collected papers. In mathematics, a divergent series is an infinite series that is not convergent, meaning that the infinite sequence of the partial sums of the series does not have a finite limit. If a series converges, the individual terms of the series must approach zero. Thus any series in which the individual terms ...

  4. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    A famous example of an application of this test is the alternating harmonic series = + = + +, which is convergent per the alternating series test (and its sum is equal to ⁡), though the series formed by taking the absolute value of each term is the ordinary harmonic series, which is divergent.

  5. Riemann series theorem - Wikipedia

    en.wikipedia.org/wiki/Riemann_series_theorem

    In mathematics, the Riemann series theorem, also called the Riemann rearrangement theorem, named after 19th-century German mathematician Bernhard Riemann, says that if an infinite series of real numbers is conditionally convergent, then its terms can be arranged in a permutation so that the new series converges to an arbitrary real number, and rearranged such that the new series diverges.

  6. Convergence tests - Wikipedia

    en.wikipedia.org/wiki/Convergence_tests

    2 Examples. 3 Convergence of products. 4 ... is a convergent series, {} is a monotonic sequence ... is a strictly monotone and divergent sequence and the following ...

  7. Absolute convergence - Wikipedia

    en.wikipedia.org/wiki/Absolute_convergence

    The converse is also true: if absolute convergence implies convergence in a normed space, then the space is a Banach space. If a series is convergent but not absolutely convergent, it is called conditionally convergent. An example of a conditionally convergent series is the alternating harmonic series.

  8. Limit of a sequence - Wikipedia

    en.wikipedia.org/wiki/Limit_of_a_sequence

    We say that "the limit of the sequence equals ." In mathematics, the limit of a sequence is the value that the terms of a sequence "tend to", and is often denoted using the symbol (e.g., ). [1] If such a limit exists and is finite, the sequence is called convergent. [2] A sequence that does not converge is said to be divergent. [3]

  9. Ratio test - Wikipedia

    en.wikipedia.org/wiki/Ratio_test

    [4] [10] This is because if Σa n is convergent, a second convergent series Σb n can be found which converges more slowly: i.e., it has the property that lim n->∞ (b n /a n) = ∞. Furthermore, if Σa n is divergent, a second divergent series Σb n can be found which diverges more slowly: i.e., it has the property that lim n->∞ (b n /a n) = 0.