enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    Gravity decreases with altitude as one rises above the Earth's surface because greater altitude means greater distance from the Earth's centre. All other things being equal, an increase in altitude from sea level to 9,000 metres (30,000 ft) causes a weight decrease of about 0.29%.

  3. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    At a fixed point on the surface, the magnitude of Earth's gravity results from combined effect of gravitation and the centrifugal force from Earth's rotation. [2] [3] At different points on Earth's surface, the free fall acceleration ranges from 9.764 to 9.834 m/s 2 (32.03 to 32.26 ft/s 2), [4] depending on altitude, latitude, and longitude.

  4. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    The publication of the law has become known as the "first great unification", as it marked the unification of the previously described phenomena of gravity on Earth with known astronomical behaviors. [1] [2] [3] This is a general physical law derived from empirical observations by what Isaac Newton called inductive reasoning. [4]

  5. Gravity - Wikipedia

    en.wikipedia.org/wiki/Gravity

    In physics, gravity (from Latin gravitas 'weight' [1]) is a fundamental interaction primarily observed as a mutual attraction between all things that have mass.Gravity is, by far, the weakest of the four fundamental interactions, approximately 10 38 times weaker than the strong interaction, 10 36 times weaker than the electromagnetic force, and 10 29 times weaker than the weak interaction.

  6. Physical geodesy - Wikipedia

    en.wikipedia.org/wiki/Physical_geodesy

    The precise strength of Earth's gravity varies with location. The agreed-upon value for standard gravity is 9.80665 m/s 2 (32.1740 ft/s 2 ) by definition. [ 4 ] This quantity is denoted variously as g n , g e (though this sometimes means the normal gravity at the equator, 9.7803267715 m/s 2 (32.087686258 ft/s 2 )), [ 5 ] g 0 , or simply g ...

  7. Gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gravitational_constant

    Nevertheless, he had the opportunity to estimate the order of magnitude of the constant when he surmised that "the mean density of the earth might be five or six times as great as the density of water", which is equivalent to a gravitational constant of the order: [14] G ≈ (6.7 ± 0.6) × 10 −11 m 3 ⋅kg −1 ⋅s −2

  8. Dealing with water weight? Why it's happening and 7 ways to ...

    www.aol.com/news/dealing-water-weight-why...

    "The majority of the adult body is water, up to 60% of your weight," says Schnoll-Sussman, adding that the average person's weight can fluctuate one to five pounds per day due to water.

  9. Geopotential height - Wikipedia

    en.wikipedia.org/wiki/Geopotential_height

    Geopotential height differs from geometric height (as given by a tape measure) because Earth's gravity is not constant, varying markedly with altitude and latitude; thus, a 1-m geopotential height difference implies a different vertical distance in physical space: "the unit-mass must be lifted higher at the equator than at the pole, if the same ...