Search results
Results from the WOW.Com Content Network
Definition of the Lorentz factor γ. The Lorentz factor or Lorentz term (also known as the gamma factor [1]) is a dimensionless quantity expressing how much the measurements of time, length, and other physical properties change for an object while it moves. The expression appears in several equations in special relativity, and it arises in ...
Download QR code; In other projects ... Description=Lorentz factor as a function of velocity. Graph created with KmPlot, edited with Inkscape. ... Lorentz factor as a ...
A sample solution in the Lorenz attractor when ρ = 28, σ = 10, and β = 8 / 3 . The Lorenz system is a system of ordinary differential equations first studied by mathematician and meteorologist Edward Lorenz.
The Lorentz factor γ retains its definition for a boost in any direction, since it depends only on the magnitude of the relative velocity. The definition β = v / c with magnitude 0 ≤ β < 1 is also used by some authors.
where = is the Lorentz factor. By applying the Lorentz transformation, the spacetime axes obtained for a boosted frame will always correspond to conjugate diameters of a pair of hyperbolas . As illustrated in Fig 2-3, the boosted and unboosted spacetime axes will in general have unequal unit lengths.
At any time after t = t′ = 0, xx′ is not zero, so dividing both sides of the equation by xx′ results in =, which is called the "Lorentz factor". When the transformation equations are required to satisfy the light signal equations in the form x = ct and x ′ = ct ′, by substituting the x and x'-values, the same technique produces the ...
Lorentz transformations can be parametrized by rapidity φ for a boost in the direction of a three-dimensional unit vector ^ = (,,), and a rotation angle θ about a three-dimensional unit vector ^ = (,,) defining an axis, so ^ = (,,) and ^ = (,,) are together six parameters of the Lorentz group (three for rotations and three for boosts). The ...
The following notations are used very often in special relativity: Lorentz factor = where = and v is the relative velocity between two inertial frames.. For two frames at rest, γ = 1, and increases with relative velocity between the two inertial frames.