Search results
Results from the WOW.Com Content Network
This can also apply to limits: see Vanish at infinity. weak, weaker The converse of strong. well-defined Accurately and precisely described or specified. For example, sometimes a definition relies on a choice of some object; the result of the definition must then be independent of this choice.
This is a list of limits for common functions such as elementary functions. In this article, the terms a , b and c are constants with respect to x . Limits for general functions
Limit of a function (ε,_δ)-definition of limit, formal definition of the mathematical notion of limit; Limit of a sequence; One-sided limit, either of the two limits of a function as a specified point is approached from below or from above; Limit inferior and limit superior; Limit of a net; Limit point, in topological spaces; Limit (category ...
Augustin-Louis Cauchy in 1821, [6] followed by Karl Weierstrass, formalized the definition of the limit of a function which became known as the (ε, δ)-definition of limit. The modern notation of placing the arrow below the limit symbol is due to G. H. Hardy, who introduced it in his book A Course of Pure Mathematics in 1908. [7]
This definition allows a limit to be defined at limit points of the domain S, if a suitable subset T which has the same limit point is chosen. Notably, the previous two-sided definition works on int S ∪ iso S c , {\displaystyle \operatorname {int} S\cup \operatorname {iso} S^{c},} which is a subset of the limit points of S .
Lists of dictionary definitions belong on Wiktionary; you can still link to them from Wikipedia articles. Do not add everyday words. Include only specialized terms specific to or having a special meaning within the subject of the glossary. All entries must be verifiable with reliable sources, just like regular article content.
The term antonym (and the related antonymy) is commonly taken to be synonymous with opposite, but antonym also has other more restricted meanings. Graded (or gradable) antonyms are word pairs whose meanings are opposite and which lie on a continuous spectrum (hot, cold).
A limit of a sequence of points () in a topological space is a special case of a limit of a function: the domain is in the space {+}, with the induced topology of the affinely extended real number system, the range is , and the function argument tends to +, which in this space is a limit point of .