Search results
Results from the WOW.Com Content Network
Every space treated in Section "Types of spaces" above, except for "Non-commutative geometry", "Schemes" and "Topoi" subsections, is a set (the "principal base set" of the structure, according to Bourbaki) endowed with some additional structure; elements of the base set are usually called "points" of this space. In contrast, elements of (the ...
An equivalent formulation of the old definition of the astronomical unit is the radius of an unperturbed circular Newtonian orbit about the Sun of a particle having infinitesimal mass, moving with a mean motion of 0.017 202 098 95 radians per day. [5] The speed of light in IAU is the defined value c 0 = 299 792 458 m/s of the SI units.
In mathematics, and particularly in set theory, category theory, type theory, and the foundations of mathematics, a universe is a collection that contains all the entities one wishes to consider in a given situation. In set theory, universes are often classes that contain (as elements) all sets for which one hopes to prove a particular theorem.
Evaluating the Hubble parameter at the present time yields Hubble's constant which is the proportionality constant of Hubble's law. Applied to a fluid with a given equation of state, the Friedmann equations yield the time evolution and geometry of the universe as a function of the fluid density.
Negative curvature – a drawn triangle's angles add up to less than 180°; such 3-dimensional space is locally modeled by a region of a hyperbolic space H 3. Curved geometries are in the domain of non-Euclidean geometry. An example of a positively curved space would be the surface of a sphere such as the Earth.
The index k is defined so that it can take only one of three values: 0, corresponding to flat Euclidean geometry; 1, corresponding to a space of positive curvature; or −1, corresponding to a space of positive or negative curvature. [153] The value of R as a function of time t depends upon k and the cosmological constant Λ. [151]
In modern physical cosmology, the cosmological principle is the notion that the spatial distribution of matter in the universe is uniformly isotropic and homogeneous when viewed on a large enough scale, since the forces are expected to act equally throughout the universe on a large scale, and should, therefore, produce no observable inequalities in the large-scale structuring over the course ...
The mathematical derivation of an idealized Hubble's law for a uniformly expanding universe is a fairly elementary theorem of geometry in 3-dimensional Cartesian/Newtonian coordinate space, which, considered as a metric space, is entirely homogeneous and isotropic (properties do not vary with location or direction). Simply stated, the theorem ...