enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Energy - Wikipedia

    en.wikipedia.org/wiki/Energy

    Energy (from Ancient Greek ἐνέργεια (enérgeia) 'activity') is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of heat and light.

  3. Units of energy - Wikipedia

    en.wikipedia.org/wiki/Units_of_energy

    Energy is defined via work, so the SI unit of energy is the same as the unit of work – the joule (J), named in honour of James Prescott Joule [1] and his experiments on the mechanical equivalent of heat. In slightly more fundamental terms, 1 joule is equal to 1 newton metre and, in terms of SI base units

  4. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    In physics, the energy–momentum relation, or relativistic dispersion relation, is the relativistic equation relating total energy (which is also called relativistic energy) to invariant mass (which is also called rest mass) and momentum. It is the extension of mass–energy equivalence for bodies or systems with non-zero momentum.

  5. First law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/First_law_of_thermodynamics

    The first law of thermodynamics is a formulation of the law of conservation of energy in the context of thermodynamic processes.The law distinguishes two principal forms of energy transfer, heat and thermodynamic work, that modify a thermodynamic system containing a constant amount of matter.

  6. Mass–energy equivalence - Wikipedia

    en.wikipedia.org/wiki/Mass–energy_equivalence

    Mass–energy equivalence states that all objects having mass, or massive objects, have a corresponding intrinsic energy, even when they are stationary.In the rest frame of an object, where by definition it is motionless and so has no momentum, the mass and energy are equal or they differ only by a constant factor, the speed of light squared (c 2).

  7. Electronvolt - Wikipedia

    en.wikipedia.org/wiki/Electronvolt

    The energy–momentum relation = + in natural units (with =) = + is a Pythagorean equation. When a relatively high energy is applied to a particle with relatively low rest mass, it can be approximated as in high-energy physics such that an applied energy with expressed in the unit eV conveniently results in a numerically approximately ...

  8. Joule - Wikipedia

    en.wikipedia.org/wiki/Joule

    Torque and energy are related to one another by the equation [citation needed] =, where E is energy, τ is (the vector magnitude of) torque, and θ is the angle swept (in radians). Since plane angles are dimensionless, it follows that torque and energy have the same dimensions. [citation needed]

  9. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    Just as with the internal energy version of the fundamental equation, the chain rule can be used on the above equations to find k+2 equations of state with respect to the particular potential. If Φ is a thermodynamic potential, then the fundamental equation may be expressed as: