Search results
Results from the WOW.Com Content Network
The gas constant occurs in the ideal gas law: = = where P is the absolute pressure, V is the volume of gas, n is the amount of substance, m is the mass, and T is the thermodynamic temperature. R specific is the mass-specific gas constant. The gas constant is expressed in the same unit as molar heat.
3.636 947 5467 (11) × 10 −4 m 2 ⋅s −1: 3.1 ... By implication, any product of powers of such constants is also such a constant, such as the molar gas constant ...
Under these conditions, p 1 V 1 γ = p 2 V 2 γ, where γ is defined as the heat capacity ratio, which is constant for a calorifically perfect gas. The value used for γ is typically 1.4 for diatomic gases like nitrogen (N 2 ) and oxygen (O 2 ), (and air, which is 99% diatomic).
Some constants, such as the ideal gas constant, R, do not describe the state of a system, and so are not properties. On the other hand, some constants, such as K f (the freezing point depression constant, or cryoscopic constant ), depend on the identity of a substance, and so may be considered to describe the state of a system, and therefore ...
Macroscopically, the ideal gas law states that, for an ideal gas, the product of pressure p and volume V is proportional to the product of amount of substance n and absolute temperature T: =, where R is the molar gas constant (8.314 462 618 153 24 J⋅K −1 ⋅mol −1). [4] Introducing the Boltzmann constant as the gas constant per molecule ...
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
square meter (m 2) differential element of volume V enclosed by surface S: cubic meter (m 3) electric field: newton per coulomb (N⋅C −1), or equivalently, volt per meter (V⋅m −1) energy: joule (J) Young's modulus: pascal (Pa) or newton per square meter (N/m 2) eccentricity