Search results
Results from the WOW.Com Content Network
Phosphite esters may be used as reducing agents in more specialised cases. For example, triethylphosphite is known to reduce certain hydroperoxides to alcohols formed by autoxidation [7] (scheme). In this process the phosphite is converted to a phosphate ester. This reaction type is also utilized in the Wender Taxol total synthesis.
Phosphite esters with tertiary alkyl halide groups can undergo the reaction, which would be unexpected if only an S N 2 mechanism was operating. Further support for this S N 1 type mechanism comes from the use of the Arbuzov reaction in the synthesis of neopentyl halides, a class of compounds that are notoriously unreactive towards S N 2 reactions.
This reaction is a variant of the Michael addition: CH 2 =CHCO 2 R + 3 H 3 PO 3 → (HO) 2 P(O)CH 2 CH 2 CO 2 R. In the Hirao coupling dialkyl phosphites (which can also be viewed as di-esters of phosphonic acid: (O=PH(OR) 2) undergo a palladium-catalyzed coupling reaction with an aryl halide to form a phosphonate.
Phosphites, sometimes called phosphite esters, have the general structure P(OR) 3 with oxidation state +3. Such species arise from the alcoholysis of phosphorus trichloride: PCl 3 + 3 ROH → P(OR) 3 + 3 HCl. The reaction is general, thus a vast number of such species are known.
The Horner–Wadsworth–Emmons (HWE) reaction is a chemical reaction used in organic chemistry of stabilized phosphonate carbanions with aldehydes (or ketones) to produce predominantly E-alkenes. [1] The Horner–Wadsworth–Emmons reaction. In 1958, Leopold Horner published a modified Wittig reaction using phosphonate-stabilized carbanions.
The Perkow reaction is an organic reaction in which a trialkyl phosphite ester reacts with a haloketone to form a dialkyl vinyl phosphate and an alkyl halide. [1] The Perkow reaction
A Norrish reaction, named after Ronald George Wreyford Norrish, is a photochemical reaction taking place with ketones and aldehydes. Such reactions are subdivided into Norrish type I reactions and Norrish type II reactions. [1] While of limited synthetic utility these reactions are important in the photo-oxidation of polymers such as ...
Wittig reactions are most commonly used to convert aldehydes and ketones to alkenes. [1] [2] [3] Most often, the Wittig reaction is used to introduce a methylene group using methylenetriphenylphosphorane (Ph 3 P=CH 2). Using this reagent, even a sterically hindered ketone such as camphor can be converted to its methylene derivative.