enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bitter electromagnet - Wikipedia

    en.wikipedia.org/wiki/Bitter_electromagnet

    The strongest continuous magnetic fields on Earth have been produced by Bitter magnets. The strongest continuous field achieved solely with a resistive magnet is 41.5 tesla as of 22 August 2017 [update] , produced by a Bitter electromagnet at the National High Magnetic Field Laboratory in Tallahassee , Florida .

  3. Earth's magnetic field - Wikipedia

    en.wikipedia.org/wiki/Earth's_magnetic_field

    A magnetic field is a vector field, but if it is expressed in Cartesian components X, Y, Z, each component is the derivative of the same scalar function called the magnetic potential. Analyses of the Earth's magnetic field use a modified version of the usual spherical harmonics that differ by a multiplicative factor.

  4. Magnetosphere - Wikipedia

    en.wikipedia.org/wiki/Magnetosphere

    In 2014, a magnetic field around HD 209458 b was inferred from the way hydrogen was evaporating from the planet. [20] [21] In 2019, the strength of the surface magnetic fields of 4 hot Jupiters were estimated and ranged between 20 and 120 gauss compared to Jupiter's surface magnetic field of 4.3 gauss.

  5. National High Magnetic Field Laboratory - Wikipedia

    en.wikipedia.org/wiki/National_High_Magnetic...

    The lab holds several world records for the world's strongest magnets, including highest magnetic field of 45.5 Tesla. [3] For nuclear magnetic resonance spectroscopy experiments, its 33-short-ton (29-long-ton; 30 t) series connected hybrid (SCH) magnet broke the record during a series of tests conducted by MagLab engineers and scientists on 15 ...

  6. Magnetic field - Wikipedia

    en.wikipedia.org/wiki/Magnetic_field

    The largest magnetic fields produced in a laboratory occur in particle accelerators, such as RHIC, inside the collisions of heavy ions, where microscopic fields reach 10 14 T. [51] [52] Magnetars have the strongest known magnetic fields of any naturally occurring object, ranging from 0.1 to 100 GT (10 8 to 10 11 T).

  7. Magnetar - Wikipedia

    en.wikipedia.org/wiki/Magnetar

    These magnetic fields are a hundred million times stronger than any man-made magnet, [11] and about a trillion times more powerful than the field surrounding Earth. [12] Earth has a geomagnetic field of 30–60 microteslas, and a neodymium-based, rare-earth magnet has a field of about 1.25 tesla, with a magnetic energy density of 4.0 × 10 5 J ...

  8. Tesla (unit) - Wikipedia

    en.wikipedia.org/wiki/Tesla_(unit)

    35.4 T – the current (2009) world record for a superconducting electromagnet in a background magnetic field [19] 45 T – the current (2015) world record for continuous field magnets [19] 97.4 T – strongest magnetic field produced by a "non-destructive" magnet [20] 100 T – approximate magnetic field strength of a typical white dwarf star

  9. Orders of magnitude (magnetic field) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude...

    Magnetic induction B (also known as magnetic flux density) has the SI unit tesla [T or Wb/m 2]. [1] One tesla is equal to 10 4 gauss. Magnetic field drops off as the inverse cube of the distance (⁠ 1 / distance 3 ⁠) from a dipole source. Energy required to produce laboratory magnetic fields increases with the square of magnetic field. [2]