Search results
Results from the WOW.Com Content Network
A linear encoder is a sensor, transducer or readhead paired with a scale that encodes position. The sensor reads the scale in order to convert the encoded position into an analog or digital signal , which can then be decoded into position by a digital readout (DRO) or motion controller.
The string potentiometer may be connected as a three-wire tapped resistor (voltage divider), in a control circuit, or may be packaged with electronics to produce a measurement signal in a useful form, such as a variable voltage 0-10 VDC, variable current 4-20mA, pulse encoder, Bus (DeviceNet and Canbus) and RS-232 communications.
The codewords in a linear block code are blocks of symbols that are encoded using more symbols than the original value to be sent. [2] A linear code of length n transmits blocks containing n symbols. For example, the [7,4,3] Hamming code is a linear binary code which represents 4-bit messages using 7-bit codewords. Two distinct codewords differ ...
Rotary incremental encoder with shaft attached to its thru-bore opening Introduction to incremental encoders, from VideoWiki script Incremental Encoder. An incremental encoder is a linear or rotary electromechanical device that has two output signals, A and B, which issue pulses when the device is moved. [1]
Gray codes are used in linear and rotary position encoders (absolute encoders and quadrature encoders) in preference to weighted binary encoding. This avoids the possibility that, when multiple bits change in the binary representation of a position, a misread will result from some of the bits changing before others.
Code-excited linear prediction (CELP) is a linear predictive speech coding algorithm originally proposed by Manfred R. Schroeder and Bishnu S. Atal in 1985. At the time, it provided significantly better quality than existing low bit-rate algorithms, such as residual-excited linear prediction (RELP) and linear predictive coding (LPC) vocoders (e.g., FS-1015).
In computing, a linear-feedback shift register (LFSR) is a shift register whose input bit is a linear function of its previous state. The most commonly used linear function of single bits is exclusive-or (XOR). Thus, an LFSR is most often a shift register whose input bit is driven by the XOR of some bits of the overall shift register value.
This function is a linear mapping. To generate the corresponding systematic encoding matrix G, multiply the Vandermonde matrix A by the inverse of A's left square submatrix. To generate the corresponding systematic encoding matrix G, multiply the Vandermonde matrix A by the inverse of A's left square submatrix.