Search results
Results from the WOW.Com Content Network
An X-ray diffraction pattern of a crystallized enzyme. The pattern of spots (reflections) and the relative strength of each spot (intensities) can be used to determine the structure of the enzyme. The relative intensities of the reflections provides information to determine the arrangement of molecules within the crystal in atomic detail.
X-ray diffraction is a generic term for phenomena associated with changes in the direction of X-ray beams due to interactions with the electrons around atoms. It occurs due to elastic scattering , when there is no change in the energy of the waves.
Series of density maps for GroEL: from left to right, 4 Å, 8 Å, 16 Å, and 32 Å resolution.The details are smeared away as the resolution becomes lower. Resolution in the context of structural biology is the ability to distinguish the presence or absence of atoms or groups of atoms in a biomolecular structure.
The first X-ray diffraction experiment was conducted in 1912 by Max von Laue, [7] while electron diffraction was first realized in 1927 in the Davisson–Germer experiment [8] and parallel work by George Paget Thomson and Alexander Reid. [9] These developed into the two main branches of crystallography, X-ray crystallography and electron ...
In the Cambridge Structural Database of small-molecule structures, more than 95% of the 500,000+ crystals have an R-factor lower than 0.15, and 9.5% have an R-factor lower than 0.03. Crystallographers also use the Free R-Factor ( R F r e e {\displaystyle R_{Free}} ) [ 3 ] to assess possible overmodeling of the data.
However, it does reduce the amplitude of the peaks, and due to the factor of in the exponential factor, it reduces peaks at large much more than peaks at small . The structure is simply reduced by a q {\displaystyle q} and disorder dependent term because all disorder of the first-kind does is smear out the scattering planes, effectively ...
Nevertheless, powder X-ray diffraction is a powerful and useful technique in its own right. It is mostly used to characterize and identify phases, and to refine details of an already known structure, rather than solving unknown structures. Advantages of the technique are: simplicity of sample preparation; rapidity of measurement
The Scherrer equation, in X-ray diffraction and crystallography, is a formula that relates the size of sub-micrometre crystallites in a solid to the broadening of a peak in a diffraction pattern. It is often referred to, incorrectly, as a formula for particle size measurement or analysis. It is named after Paul Scherrer.