Search results
Results from the WOW.Com Content Network
The transfer function of a two-port electronic circuit, such as an amplifier, might be a two-dimensional graph of the scalar voltage at the output as a function of the scalar voltage applied to the input; the transfer function of an electromechanical actuator might be the mechanical displacement of the movable arm as a function of electric ...
In control system theory, and various branches of engineering, a transfer function matrix, or just transfer matrix is a generalisation of the transfer functions of single-input single-output (SISO) systems to multiple-input and multiple-output (MIMO) systems. [1] The matrix relates the outputs of the system to its inputs.
Function rank is an important concept to array programming languages in general, by analogy to tensor rank in mathematics: functions that operate on data may be classified by the number of dimensions they act on. Ordinary multiplication, for example, is a scalar ranked function because it operates on zero-dimensional data (individual numbers).
Because the transfer function is periodic, this repeated pattern continues forever. The simplest implementation of a sinc-in-frequency filter uses a boxcar impulse response to produce a simple moving average (specifically if divide by the number of samples), also known as accumulate-and-dump filter (specifically if simply sum without a division).
The transfer function coefficients can also be used to construct another type of canonical form ˙ = [] + [] () = [] (). This state-space realization is called observable canonical form because the resulting model is guaranteed to be observable (i.e., because the output exits from a chain of integrators, every state has an effect on the output).
In C++, associative containers are a group of class templates in the standard library of the C++ programming language that implement ordered associative arrays. [1] Being templates , they can be used to store arbitrary elements, such as integers or custom classes.
In mathematical terms, an associative array is a function with finite domain. [1] It supports 'lookup', 'remove', and 'insert' operations. The dictionary problem is the classic problem of designing efficient data structures that implement associative arrays. [2] The two major solutions to the dictionary problem are hash tables and search trees.
An associative container uses an associative array, map, or dictionary, composed of key-value pairs, such that each key appears at most once in the container. The key is used to find the value, the object, if it is stored in the container. Associative containers are used in programming languages as class templates.