Search results
Results from the WOW.Com Content Network
The magnetosphere of Jupiter is the largest planetary magnetosphere in the Solar System, extending up to 7,000,000 kilometers (4,300,000 mi) on the dayside and almost to the orbit of Saturn on the nightside. [17] Jupiter's magnetosphere is stronger than Earth's by an order of magnitude, and its magnetic moment is approximately 18,000 times ...
An open circulatory system is made up of a heart, vessels, and hemolymph. This diagram shows how the hemolymph is circulated throughout the body of a grasshopper. The hemolymph is first pumped through the heart, into the aorta, dispersed into the head and throughout the hemocoel, then back through the ostia that are located in the heart, where ...
The increases are due to storm-related injections and acceleration of particles from the tail of the magnetosphere. Another cause of variability of the outer belt particle populations is the wave-particle interactions with various plasma waves in a broad range of frequencies.
A simulation of a charged particle being deflected from the Earth by the magnetosphere. Thus in the "closed" model of the magnetosphere, the magnetopause boundary between the magnetosphere and the solar wind is outlined by field lines. Not much plasma can cross such a stiff boundary. [1]
In vertebrates, the circulatory system is a system of organs that includes the heart, blood vessels, and blood which is circulated throughout the body. [ 1 ] [ 2 ] It includes the cardiovascular system , or vascular system , that consists of the heart and blood vessels (from Greek kardia meaning heart , and Latin vascula meaning vessels ).
The magnetosphere of Saturn is the cavity created in the flow of the solar wind by the planet's internally generated magnetic field. Discovered in 1979 by the Pioneer 11 spacecraft, Saturn's magnetosphere is the second largest of any planet in the Solar System after Jupiter.
Because of the open circulatory system of gastropods and other molluscs, there is no clear distinction between the blood and the lymph, or interstitial fluid. As a result, the circulatory fluid is commonly referred to as haemolymph, rather than blood. The majority of gastropods have haemolymph containing the respiratory pigment haemocyanin.
As a consequence, microcirculation blood flow remains constant despite changes in systemic blood pressure. This mechanism is present in all tissues and organs of the human body. In addition, the nervous system participates in the regulation of microcirculation. The sympathetic nervous system activates the smaller arterioles, including terminals.