enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Denaturation (biochemistry) - Wikipedia

    en.wikipedia.org/wiki/Denaturation_(biochemistry)

    In biochemistry, denaturation is a process in which proteins or nucleic acids lose folded structure present in their native state due to various factors, including application of some external stress or compound, such as a strong acid or base, a concentrated inorganic salt, an organic solvent (e.g., alcohol or chloroform), agitation and radiation, or heat. [3]

  3. Transmembrane protein - Wikipedia

    en.wikipedia.org/wiki/Transmembrane_protein

    For example, the "unfolded" bacteriorhodopsin in SDS micelles has four transmembrane α-helices folded, while the rest of the protein is situated at the micelle-water interface and can adopt different types of non-native amphiphilic structures. Free energy differences between such detergent-denatured and native states are similar to stabilities ...

  4. Denaturation - Wikipedia

    en.wikipedia.org/wiki/Denaturation

    Denaturation (biochemistry), a structural change in macromolecules caused by extreme conditions; Denaturation (fissile materials), transforming fissile materials so that they cannot be used in nuclear weapons; Denaturation (food), intentional adulteration of food or drink rendering it unfit for consumption while remaining suitable for other uses

  5. Equilibrium unfolding - Wikipedia

    en.wikipedia.org/wiki/Equilibrium_unfolding

    In the less extensive technique of equilibrium unfolding, the fractions of folded and unfolded molecules (denoted as and , respectively) are measured as the solution conditions are gradually changed from those favoring the native state to those favoring the unfolded state, e.g., by adding a denaturant such as guanidinium hydrochloride or urea.

  6. Polyacrylamide gel electrophoresis - Wikipedia

    en.wikipedia.org/wiki/Polyacrylamide_gel...

    Picture of an SDS-PAGE. The molecular markers (ladder) are in the left lane. Polyacrylamide gel electrophoresis (PAGE) is a technique widely used in biochemistry, forensic chemistry, genetics, molecular biology and biotechnology to separate biological macromolecules, usually proteins or nucleic acids, according to their electrophoretic mobility.

  7. Hyperchromicity - Wikipedia

    en.wikipedia.org/wiki/Hyperchromicity

    The most famous example is the hyperchromicity of DNA that occurs when the DNA duplex is denatured. [1] The UV absorption is increased when the two single DNA strands are being separated, either by heat or by addition of denaturant or by increasing the pH level. The opposite, a decrease of absorbance is called hypochromicity.

  8. Proteinase K - Wikipedia

    en.wikipedia.org/wiki/Proteinase_K

    Proteinase K is commonly used in molecular biology to digest protein and remove contamination from preparations of nucleic acid. Addition of Proteinase K to nucleic acid preparations rapidly inactivates nucleases that might otherwise degrade the DNA or RNA during purification.

  9. Gel electrophoresis of nucleic acids - Wikipedia

    en.wikipedia.org/wiki/Gel_electrophoresis_of...

    Similarly, RNA and single-stranded DNA can be run and visualised by PAGE gels containing denaturing agents such as urea. PAGE gels are widely used in techniques such as DNA foot printing, EMSA and other DNA-protein interaction techniques. The measurement and analysis are mostly done with a specialized gel analysis software.