enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  3. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions.Assuming constant acceleration g due to Earth's gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth's gravitational field of strength g.

  4. List of relativistic equations - Wikipedia

    en.wikipedia.org/wiki/List_of_relativistic_equations

    This is the formula for length contraction. As there existed a proper time for time dilation, there exists a proper length for length contraction, which in this case is ℓ. The proper length of an object is the length of the object in the frame in which the object is at rest.

  5. Distance measuring equipment - Wikipedia

    en.wikipedia.org/wiki/Distance_measuring_equipment

    The distance formula, distance = rate * time, is used by the DME receiver to calculate its distance from the DME ground station. The rate in the calculation is the velocity of the radio pulse, which is the speed of light (roughly 300,000,000 m/s or 186,000 mi/s).

  6. Time dilation - Wikipedia

    en.wikipedia.org/wiki/Time_dilation

    Emil Cohn (1904) specifically related this formula to the rate of clocks. [6] In the context of special relativity it was shown by Albert Einstein (1905) that this effect concerns the nature of time itself, and he was also the first to point out its reciprocity or symmetry. [ 7 ]

  7. Displacement (geometry) - Wikipedia

    en.wikipedia.org/wiki/Displacement_(geometry)

    In considering motions of objects over time, the instantaneous velocity of the object is the rate of change of the displacement as a function of time. The instantaneous speed, then, is distinct from velocity, or the time rate of change of the distance travelled along a specific path. The velocity may be equivalently defined as the time rate of ...

  8. Hubble's law - Wikipedia

    en.wikipedia.org/wiki/Hubble's_law

    D is the proper distance (which can change over time, ... are too large to use a non-relativistic formula for Doppler ... distance changes with time at a rate d t D.

  9. Exponential decay - Wikipedia

    en.wikipedia.org/wiki/Exponential_decay

    A more intuitive characteristic of exponential decay for many people is the time required for the decaying quantity to fall to one half of its initial value. (If N(t) is discrete, then this is the median life-time rather than the mean life-time.) This time is called the half-life, and often denoted by the symbol t 1/2. The half-life can be ...