Search results
Results from the WOW.Com Content Network
is a function from domain X to codomain Y. The yellow oval inside Y is the image of . Sometimes "range" refers to the image and sometimes to the codomain. In mathematics, the range of a function may refer to either of two closely related concepts: the codomain of the function, or; the image of the function.
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
In mathematics, some functions or groups of functions are important enough to deserve their own names. This is a listing of articles which explain some of these functions in more detail. There is a large theory of special functions which developed out of statistics and mathematical physics.
A graph of the vector-valued function r(z) = 2 cos z, 4 sin z, z indicating a range of solutions and the vector when evaluated near z = 19.5. A common example of a vector-valued function is one that depends on a single real parameter t, often representing time, producing a vector v(t) as the result.
The graphs can be used together to determine the economic equilibrium (essentially, to solve an equation). Simple graph used for reading values: the bell-shaped normal or Gaussian probability distribution, from which, for example, the probability of a man's height being in a specified range can be derived, given data for the adult male population.
A function f from X to Y. The set of points in the red oval X is the domain of f. Graph of the real-valued square root function, f(x) = √ x, whose domain consists of all nonnegative real numbers. In mathematics, the domain of a function is the set of inputs accepted by the function.
The standard logistic function is the logistic function with parameters =, =, =, which yields = + = + = / / + /.In practice, due to the nature of the exponential function, it is often sufficient to compute the standard logistic function for over a small range of real numbers, such as a range contained in [−6, +6], as it quickly converges very close to its saturation values of 0 and 1.
Multivalued functions of a complex variable have branch points. For example, for the nth root and logarithm functions, 0 is a branch point; for the arctangent function, the imaginary units i and −i are branch points. Using the branch points, these functions may be redefined to be single-valued functions, by restricting the range.