Search results
Results from the WOW.Com Content Network
An R F value will always be in the range 0 to 1; if the substance moves, it can only move in the direction of the solvent flow, and cannot move faster than the solvent. For example, if particular substance in an unknown mixture travels 2.5 cm and the solvent front travels 5.0 cm, the retardation factor would be 0.50.
In crystallography, the R-factor (sometimes called residual factor or reliability factor or the R-value or R Work) is a measure of the disagreement between the crystallographic model and the experimental X-ray diffraction data - lower the R value lower is the disagreement or
The response factor can be expressed on a molar, volume or mass [1] basis. Where the true amount of sample and standard are equal: = where A is the signal (e.g. peak area) and the subscript i indicates the sample and the subscript st indicates the standard. [2]
In contrast to the similar concept called Retention uniformity, R d is sensitive to R f values close to 0 or 1, or close to themselves. If two values are not separated, it is equal to 0. For example, the R f values (0,0.2,0.2,0.3) (two compounds not separated at 0.2 and one at the start ) result in R D equal to 0, but R U equal to 0.3609.
Another function is the multispot response function (MRF) as developed by De Spiegeleer et al.{Analytical Chemistry (1987):59(1),62-64} It is based also of differences product. This function always lies between 0 and 1. When two RF values are equal, it is equal to 0, when all RF values are equal-spread, it is equal to 1.
The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript r {\displaystyle r} means "reaction" and the superscript ⊖ {\displaystyle \ominus } means "standard".
In physical chemistry, the Faraday constant (symbol F, sometimes stylized as ℱ) is a physical constant defined as the quotient of the total electric charge (q) by the amount (n) of elementary charge carriers in any given sample of matter: F = q/n; it is expressed in units of coulombs per mole (C/mol).
where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...