Search results
Results from the WOW.Com Content Network
Example of a naive Bayes classifier depicted as a Bayesian Network. In statistics, naive Bayes classifiers are a family of linear "probabilistic classifiers" which assumes that the features are conditionally independent, given the target class. The strength (naivety) of this assumption is what gives the classifier its name.
Standard examples of each, all of which are linear classifiers, are: generative classifiers: naive Bayes classifier and; linear discriminant analysis; discriminative model: logistic regression; In application to classification, one wishes to go from an observation x to a label y (or probability distribution on labels).
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
Automatically learning the graph structure of a Bayesian network (BN) is a challenge pursued within machine learning. The basic idea goes back to a recovery algorithm developed by Rebane and Pearl [ 7 ] and rests on the distinction between the three possible patterns allowed in a 3-node DAG:
Bayesian inference (/ ˈ b eɪ z i ə n / BAY-zee-ən or / ˈ b eɪ ʒ ən / BAY-zhən) [1] is a method of statistical inference in which Bayes' theorem is used to calculate a probability of a hypothesis, given prior evidence, and update it as more information becomes available.
It can be drastically simplified by assuming that the probability of appearance of a word knowing the nature of the text (spam or not) is independent of the appearance of the other words. This is the naive Bayes assumption and this makes this spam filter a naive Bayes model. For instance, the programmer can assume that:
Bayes' theorem is named after Thomas Bayes (/ b eɪ z /), a minister, statistician, and philosopher. Bayes used conditional probability to provide an algorithm (his Proposition 9) that uses evidence to calculate limits on an unknown parameter. His work was published in 1763 as An Essay Towards Solving a Problem in the Doctrine of Chances.
Formally, an "ordinary" classifier is some rule, or function, that assigns to a sample x a class label ŷ: ^ = The samples come from some set X (e.g., the set of all documents, or the set of all images), while the class labels form a finite set Y defined prior to training.