Search results
Results from the WOW.Com Content Network
The similarity of two strings and is determined by this formula: twice the number of matching characters divided by the total number of characters of both strings. The matching characters are defined as some longest common substring [3] plus recursively the number of matching characters in the non-matching regions on both sides of the longest common substring: [2] [4]
In computer science and data mining, MinHash (or the min-wise independent permutations locality sensitive hashing scheme) is a technique for quickly estimating how similar two sets are. The scheme was published by Andrei Broder in a 1997 conference, [ 1 ] and initially used in the AltaVista search engine to detect duplicate web pages and ...
The most widely known string metric is a rudimentary one called the Levenshtein distance (also known as edit distance). [2] It operates between two input strings, returning a number equivalent to the number of substitutions and deletions needed in order to transform one input string into another.
Various algorithms exist that solve problems beside the computation of distance between a pair of strings, to solve related types of problems. Hirschberg's algorithm computes the optimal alignment of two strings, where optimality is defined as minimizing edit distance. Approximate string matching can be formulated in terms of edit distance.
The graph edit distance between two graphs is related to the string edit distance between strings. With the interpretation of strings as connected , directed acyclic graphs of maximum degree one, classical definitions of edit distance such as Levenshtein distance , [ 3 ] [ 4 ] Hamming distance [ 5 ] and Jaro–Winkler distance may be ...
Normalized compression distance (NCD) is a way of measuring the similarity between two objects, be it two documents, two letters, two emails, two music scores, two languages, two programs, two pictures, two systems, two genomes, to name a few. Such a measurement should not be application dependent or arbitrary.
Computing E(m, j) is very similar to computing the edit distance between two strings. In fact, we can use the Levenshtein distance computing algorithm for E ( m , j ), the only difference being that we must initialize the first row with zeros, and save the path of computation, that is, whether we used E ( i − 1, j ), E( i , j − 1) or E ( i ...
When taken as a string similarity measure, the coefficient may be calculated for two strings, x and y using bigrams as follows: [11] = + where n t is the number of character bigrams found in both strings, n x is the number of bigrams in string x and n y is the number of bigrams in string y. For example, to calculate the similarity between: