Search results
Results from the WOW.Com Content Network
The angle between a side and a diagonal is equal to the angle between the opposite side and the same diagonal. The diagonals cut each other in mutually the same ratio (this ratio is the same as that between the lengths of the parallel sides). The diagonals cut the quadrilateral into four triangles of which one opposite pair have equal areas ...
In a crossed quadrilateral, the four "interior" angles on either side of the crossing (two acute and two reflex, all on the left or all on the right as the figure is traced out) add up to 720°. [10] Crossed trapezoid (US) or trapezium (Commonwealth): [11] a crossed quadrilateral in which one pair of nonadjacent sides is parallel (like a ...
Any non-self-crossing quadrilateral with exactly one axis of symmetry must be either an isosceles trapezoid or a kite. [5] However, if crossings are allowed, the set of symmetric quadrilaterals must be expanded to include also the crossed isosceles trapezoids, crossed quadrilaterals in which the crossed sides are of equal length and the other sides are parallel, and the antiparallelograms ...
Trapezium, plural trapezia, may refer to: Trapezium, in British and other forms of English, a trapezoid, a quadrilateral that has exactly one pair of parallel sides; Trapezium, in North American English, an irregular quadrilateral with no sides parallel; Trapezium (bone), a bone in the hand; Trapezium Cluster, a group of stars in the Orion Nebula
The formula for the area of a trapezoid can be simplified using Pitot's theorem to get a formula for the area of a tangential trapezoid. If the bases have lengths a, b, and any one of the other two sides has length c, then the area K is given by the formula [2] (This formula can be used only in cases where the bases are parallel.)
Finally, the angles CME and FMA are the same. Hence, AFM is an isosceles triangle, and thus the sides AF and FM are equal. The proof that FD = FM goes similarly: the angles FDM, BCM, BME and DMF are all equal, so DFM is an isosceles triangle, so FD = FM. It follows that AF = FD, as the theorem claims.
Two pairs of opposite sides are parallel (by definition). Two pairs of opposite sides are equal in length. Two pairs of opposite angles are equal in measure. The diagonals bisect each other. One pair of opposite sides is parallel and equal in length. Adjacent angles are supplementary. Each diagonal divides the quadrilateral into two congruent ...
The bisectors of the angles at B and D intersect on the diagonal AC. A diagonal BD of the quadrilateral is a symmedian of the angles at B and D in the triangles ∆ ABC and ∆ ADC. The point of intersection of the diagonals is located towards the sides of the quadrilateral to proportional distances to the length of these sides.