Search results
Results from the WOW.Com Content Network
where R 0 is the initial amount of R in the titration vessel, v 0 is the initial volume, [R] is the concentration of R in the burette and v i is the volume added. The burette concentration of a reactant not present in the burette is taken to be zero. In general, solving these nonlinear equations presents a formidable challenge because of the ...
= measured concentration in a dry gas having a measured volume % O 2 = Thus, a measured NO x concentration of 45 ppmv (dry basis) in a gas having 5 volume % O 2 is 45 × ( 20.9 - 3 ) ÷ ( 20.9 - 5 ) = 50.7 ppmv (dry basis) of NO x when corrected to a gas having a specified reference O 2 content of 3 volume %.
Dilution is the process of decreasing the concentration of a solute in a solution, usually simply by mixing with more solvent like adding more water to the solution. To dilute a solution means to add more solvent without the addition of more solute. The resulting solution is thoroughly mixed so as to ensure that all parts of the solution are ...
The condition to get a partially ideal solution on mixing is that the volume of the resulting mixture V to equal double the volume V s of each solution mixed in equal volumes due to the additivity of volumes. The resulting volume can be found from the mass balance equation involving densities of the mixed and resulting solutions and equalising ...
The volume V in the definition refers to the volume of the solution, not the volume of the solvent. One litre of a solution usually contains either slightly more or slightly less than 1 litre of solvent because the process of dissolution causes volume of liquid to increase or decrease. Sometimes the mass concentration is called titre.
The result is that in dilute ideal solutions, the extent of boiling-point elevation is directly proportional to the molal concentration (amount of substance per mass) of the solution according to the equation: [2] ΔT b = K b · b c. where the boiling point elevation, is defined as T b (solution) − T b (pure solvent).
The solubility of a specific solute in a specific solvent is generally expressed as the concentration of a saturated solution of the two. [1] Any of the several ways of expressing concentration of solutions can be used, such as the mass, volume, or amount in moles of the solute for a specific mass, volume, or mole amount of the solvent or of the solution.
It is the same concept as volume percent (vol%) except that the latter is expressed with a denominator of 100, e.g., 18%. The volume fraction coincides with the volume concentration in ideal solutions where the volumes of the constituents are additive (the volume of the solution is equal to the sum of the volumes of its ingredients).