enow.com Web Search

  1. Ads

    related to: example of an impulse graph in math worksheet free

Search results

  1. Results from the WOW.Com Content Network
  2. Dirac delta function - Wikipedia

    en.wikipedia.org/wiki/Dirac_delta_function

    The graph of the Dirac delta is usually thought of as following the whole x-axis and the positive y-axis. [5]: 174 The Dirac delta is used to model a tall narrow spike function (an impulse), and other similar abstractions such as a point charge, point mass or electron point.

  3. Dirac comb - Wikipedia

    en.wikipedia.org/wiki/Dirac_comb

    The graph of the Dirac comb function is an infinite series of Dirac delta functions spaced at intervals of T. In mathematics, a Dirac comb (also known as sha function, impulse train or sampling function) is a periodic function with the formula ⁡ := = for some given period . [1]

  4. Green's function - Wikipedia

    en.wikipedia.org/wiki/Green's_function

    In mathematics, a Green's function (or Green function) is the impulse response of an inhomogeneous linear differential operator defined on a domain with specified initial conditions or boundary conditions. This means that if is a linear differential operator, then

  5. Impulse (physics) - Wikipedia

    en.wikipedia.org/wiki/Impulse_(physics)

    The impulse delivered by a varying force is the integral of the force F with respect to time: =. The SI unit of impulse is the newton second (N⋅s), and the dimensionally equivalent unit of momentum is the kilogram metre per second (kg⋅m/s).

  6. Impulse response - Wikipedia

    en.wikipedia.org/wiki/Impulse_response

    The impulse can be modeled as a Dirac delta function for continuous-time systems, or as the discrete unit sample function for discrete-time systems. The Dirac delta represents the limiting case of a pulse made very short in time while maintaining its area or integral (thus giving an infinitely high peak).

  7. Tsiolkovsky rocket equation - Wikipedia

    en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation

    A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...

  1. Ads

    related to: example of an impulse graph in math worksheet free