enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Inversion transformation - Wikipedia

    en.wikipedia.org/wiki/Inversion_transformation

    In mathematical physics, inversion transformations are a natural extension of Poincaré transformations to include all conformal, one-to-one transformations on coordinate space-time. [ 1 ] [ 2 ] They are less studied in physics because, unlike the rotations and translations of Poincaré symmetry, an object cannot be physically transformed by ...

  3. Inversive geometry - Wikipedia

    en.wikipedia.org/wiki/Inversive_geometry

    In geometry, inversive geometry is the study of inversion, a transformation of the Euclidean plane that maps circles or lines to other circles or lines and that preserves the angles between crossing curves. Many difficult problems in geometry become much more tractable when an inversion is applied.

  4. Inversion - Wikipedia

    en.wikipedia.org/wiki/Inversion

    Inversion in a point, or point reflection, a kind of isometric (distance-preserving) transformation in a Euclidean space; Inversion transformation, a conformal transformation (one which preserves angles of intersection) Method of inversion, the image of a harmonic function in a sphere (or plane); see Method of image charges

  5. Parity (physics) - Wikipedia

    en.wikipedia.org/wiki/Parity_(physics)

    In physics, a parity transformation (also called parity inversion) is the flip in the sign of one spatial coordinate. In three dimensions, it can also refer to the simultaneous flip in the sign of all three spatial coordinates (a point reflection ):

  6. Point reflection - Wikipedia

    en.wikipedia.org/wiki/Point_reflection

    In geometry, a point reflection (also called a point inversion or central inversion) is a geometric transformation of affine space in which every point is reflected across a designated inversion center, which remains fixed. In Euclidean or pseudo-Euclidean spaces, a point reflection is an isometry (preserves distance). [1]

  7. Fourier inversion theorem - Wikipedia

    en.wikipedia.org/wiki/Fourier_inversion_theorem

    The Fourier inversion theorem holds for all Schwartz functions (roughly speaking, smooth functions that decay quickly and whose derivatives all decay quickly). This condition has the benefit that it is an elementary direct statement about the function (as opposed to imposing a condition on its Fourier transform), and the integral that defines ...

  8. Inverse Laplace transform - Wikipedia

    en.wikipedia.org/wiki/Inverse_Laplace_transform

    Post's inversion formula for Laplace transforms, named after Emil Post, [3] is a simple-looking but usually impractical formula for evaluating an inverse Laplace transform. The statement of the formula is as follows: Let f ( t ) {\displaystyle f(t)} be a continuous function on the interval [ 0 , ∞ ) {\displaystyle [0,\infty )} of exponential ...

  9. Involution (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Involution_(mathematics)

    Any involution is a bijection.. The identity map is a trivial example of an involution. Examples of nontrivial involutions include negation (x ↦ −x), reciprocation (x ↦ 1/x), and complex conjugation (z ↦ z) in arithmetic; reflection, half-turn rotation, and circle inversion in geometry; complementation in set theory; and reciprocal ciphers such as the ROT13 transformation and the ...