Search results
Results from the WOW.Com Content Network
Over GF(2), x + 1 is a primitive polynomial and all other primitive polynomials have an odd number of terms, since any polynomial mod 2 with an even number of terms is divisible by x + 1 (it has 1 as a root). An irreducible polynomial F(x) of degree m over GF(p), where p is prime, is a primitive polynomial if the smallest positive integer n ...
A polynomial P with coefficients in a UFD R is then said to be primitive if the only elements of R that divide all coefficients of P at once are the invertible elements of R; i.e., the gcd of the coefficients is one. Primitivity statement: If R is a UFD, then the set of primitive polynomials in R[X] is closed under
The content of a polynomial p ∈ Z[X], denoted "cont(p)", is, up to its sign, the greatest common divisor of its coefficients. The primitive part of p is primpart(p) = p/cont(p), which is a primitive polynomial with integer coefficients. This defines a factorization of p into the product of an integer and a primitive polynomial. This ...
In different branches of mathematics, primitive polynomial may refer to: Primitive polynomial (field theory) , a minimal polynomial of an extension of finite fields Primitive polynomial (ring theory) , a polynomial with coprime coefficients
The feedback tap numbers shown correspond to a primitive polynomial in the table, so the register cycles through the maximum number of 65535 states excluding the all-zeroes state. The state shown, 0xACE1 (hexadecimal) will be followed by 0x5670.
A monic irreducible polynomial of degree n having coefficients in the finite field GF(q), where q = p t for some prime p and positive integer t, is called a primitive polynomial if all of its roots are primitive elements of GF(q n). [2] [3] In the polynomial representation of the finite field, this implies that x is a primitive element.
An important relation linking cyclotomic polynomials and primitive roots of unity is ∏ d ∣ n Φ d ( x ) = x n − 1 , {\displaystyle \prod _{d\mid n}\Phi _{d}(x)=x^{n}-1,} showing that x {\displaystyle x} is a root of x n − 1 {\displaystyle x^{n}-1} if and only if it is a d th primitive root of unity for some d that divides n .
A polynomial is primitive if its content equals 1. Thus the primitive part of a polynomial is a primitive polynomial. Gauss's lemma for polynomials states that the product of primitive polynomials (with coefficients in the same unique factorization domain) also is primitive. This implies that the content and the primitive part of the product of ...