Ad
related to: pm synchronous motor drive simulink
Search results
Results from the WOW.Com Content Network
PSIM is an Electronic circuit simulation software package, designed specifically for use in power electronics and motor drive simulations but can be used to simulate any electronic circuit. Developed by Powersim, PSIM uses nodal analysis and the trapezoidal rule integration [2] as the basis of its simulation algorithm. PSIM provides a schematic ...
DTC techniques for the interior permanent magnet synchronous machine (IPMSM) were introduced in the late 1990s [16] and synchronous reluctance motors (SynRM) in the 2010s. [17] DTC was applied to doubly fed machine control in the early 2000s. [18] Doubly fed generators are commonly used in 1-3 MW wind turbine applications.
A permanent magnet synchronous generator is a generator where the excitation field is provided by a permanent magnet instead of a coil. The term synchronous refers here to the fact that the rotor and magnetic field rotate with the same speed, because the magnetic field is generated through a shaft-mounted permanent magnet mechanism, and current is induced into the stationary armature.
The rotor is made of permanent magnet. Small synchronous motor with integral stepdown gear from a microwave oven. A synchronous electric motor is an AC electric motor in which, at steady state, [1] the rotation of the shaft is synchronized with the frequency of the supply current; the rotation period is exactly equal to an integer number of AC ...
In vector control, an AC induction or synchronous motor is controlled under all operating conditions like a separately excited DC motor. [21] That is, the AC motor behaves like a DC motor in which the field flux linkage and armature flux linkage created by the respective field and armature (or torque component) currents are orthogonally aligned such that, when torque is controlled, the field ...
A permanent magnet motor is a type of electric motor that uses permanent magnets for the field excitation and a wound armature. The permanent magnets can either be stationary or rotating; interior or exterior to the armature for a radial flux machine or layered with the armature for an axial flux topology.
The rotor operates at synchronous speeds without current-conducting parts. Rotor losses are minimal compared to those of an induction motor, however it normally has less torque. [2] [3] Once started at synchronous speed, the motor can operate with sinusoidal voltage. Speed control requires a variable-frequency drive.
The low-acceleration, high speed and high power motors are usually of the linear synchronous motor (LSM) design, with an active winding on one side of the air-gap and an array of alternate-pole magnets on the other side. These magnets can be permanent magnets or electromagnets. The motor for the Shanghai maglev train, for instance, is an LSM.
Ad
related to: pm synchronous motor drive simulink