Search results
Results from the WOW.Com Content Network
In statistics and in particular in regression analysis, leverage is a measure of how far away the independent variable values of an observation are from those of the other observations. High-leverage points , if any, are outliers with respect to the independent variables .
A regression model may be represented via matrix multiplication as y = X β + e , {\displaystyle y=X\beta +e,} where X is the design matrix, β {\displaystyle \beta } is a vector of the model's coefficients (one for each variable), e {\displaystyle e} is a vector of random errors with mean zero, and y is the vector of predicted outputs for each ...
The true distribution is then approximated by a linear regression, and the best estimators are obtained in closed form as ^ = ((~) ~) (~) (¯), where denotes the template matrix with the values of the known or previously determined model for any of the reference values β, are the random variables (e.g. a measurement), and the matrix ~ and the ...
A model with exactly one explanatory variable is a simple linear regression; a model with two or more explanatory variables is a multiple linear regression. [1] This term is distinct from multivariate linear regression , which predicts multiple correlated dependent variables rather than a single dependent variable.
Yr is the expected (predicted) value of y for a certain value of x; A 1 and A 2 are regression coefficients (indicating the slope of the line segments); K 1 and K 2 are regression constants (indicating the intercept at the y-axis). The data may show many types or trends, [2] see the figures. The method also yields two correlation coefficients (R):
The basic form of a linear predictor function () for data point i (consisting of p explanatory variables), for i = 1, ..., n, is = + + +,where , for k = 1, ..., p, is the value of the k-th explanatory variable for data point i, and , …, are the coefficients (regression coefficients, weights, etc.) indicating the relative effect of a particular explanatory variable on the outcome.
Ordinary least squares regression of Okun's law.Since the regression line does not miss any of the points by very much, the R 2 of the regression is relatively high.. In statistics, the coefficient of determination, denoted R 2 or r 2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file