Search results
Results from the WOW.Com Content Network
In the physical science of dynamics, rigid-body dynamics studies the movement of systems of interconnected bodies under the action of external forces.The assumption that the bodies are rigid (i.e. they do not deform under the action of applied forces) simplifies analysis, by reducing the parameters that describe the configuration of the system to the translation and rotation of reference ...
In order to define the twist of a rigid body, we must consider its movement defined by the parameterized set of spatial displacements, D(t) = ([A(t)], d(t)), where [A] is a rotation matrix and d is a translation vector. This causes a point p that is fixed in moving body coordinates to trace a curve P(t) in the fixed frame given by
In classical mechanics, Euler's rotation equations are a vectorial quasilinear first-order ordinary differential equation describing the rotation of a rigid body, using a rotating reference frame with angular velocity ω whose axes are fixed to the body. They are named in honour of Leonhard Euler.
The dynamics of a rigid body system is described by the laws of kinematics and by the application of Newton's second law or their derivative form, Lagrangian mechanics. The solution of these equations of motion provides a description of the position, the motion and the acceleration of the individual components of the system, and overall the ...
The systematic treatment of the dynamic behavior of interconnected bodies has led to a large number of important multibody formalisms in the field of mechanics. The simplest bodies or elements of a multibody system were treated by Newton (free particle) and Euler (rigid body). Euler introduced reaction forces between bodies.
Rigid body dynamics deals with the motion of objects that cannot change shape, size, or mass but can change orientation and position. To account for rotational energy and momentum, we must describe how force is applied to the object using a moment , and account for the mass distribution of the object using an inertia tensor .
A Treatise on the Analytical Dynamics of Particles and Rigid Bodies is a treatise and textbook on analytical dynamics by British mathematician Sir Edmund Taylor Whittaker. Initially published in 1904 by the Cambridge University Press, the book focuses heavily on the three-body problem and has since gone through four editions and has been ...
Internal forces between the particles that make up a body do not contribute to changing the momentum of the body as there is an equal and opposite force resulting in no net effect. [3] The linear momentum of a rigid body is the product of the mass of the body and the velocity of its center of mass v cm. [1] [4] [5]