Search results
Results from the WOW.Com Content Network
Each of these number systems is a positional system, but while decimal weights are powers of 10, the octal weights are powers of 8 and the hexadecimal weights are powers of 16. To convert from hexadecimal or octal to decimal, for each digit one multiplies the value of the digit by the value of its position and then adds the results. For example:
In this clock, each column of LEDs shows a binary-coded decimal numeral of the traditional sexagesimal time. In computing and electronic systems, binary-coded decimal (BCD) is a class of binary encodings of decimal numbers where each digit is represented by a fixed number of bits, usually four or eight.
Hexadecimal (also known as base-16 or simply hex) is a positional numeral system that represents numbers using a radix (base) of sixteen. Unlike the decimal system representing numbers using ten symbols, hexadecimal uses sixteen distinct symbols, most often the symbols "0"–"9" to represent values 0 to 9 and "A"–"F" to represent values from ten to fifteen.
A binary-to-text encoding is encoding of data in plain text. More precisely, it is an encoding of binary data in a sequence of printable characters . These encodings are necessary for transmission of data when the communication channel does not allow binary data (such as email or NNTP ) or is not 8-bit clean .
To convert a hexadecimal number into its binary equivalent, simply substitute the corresponding binary digits: 3A 16 = 0011 1010 2 E7 16 = 1110 0111 2. To convert a binary number into its hexadecimal equivalent, divide it into groups of four bits. If the number of bits isn't a multiple of four, simply insert extra 0 bits at the left (called ...
All printable ASCII characters (decimal values between 33 and 126) may be represented by themselves, except = (decimal 61, hexadecimal 3D, therefore =3D). ASCII tab and space characters , decimal values 9 and 32, may be represented by themselves, except if these characters would appear at the end of the encoded line.
In computer science, the double dabble algorithm is used to convert binary numbers into binary-coded decimal (BCD) notation. [ 1 ] [ 2 ] It is also known as the shift-and-add -3 algorithm , and can be implemented using a small number of gates in computer hardware, but at the expense of high latency .
This table illustrates an example of decimal value of 149 and the location of LSb. In this particular example, the position of unit value (decimal 1 or 0) is located in bit position 0 (n = 0). MSb stands for most significant bit , while LSb stands for least significant bit .