Search results
Results from the WOW.Com Content Network
The capstan equation [1] or belt friction equation, also known as Euler–Eytelwein formula [2] (after Leonhard Euler and Johann Albert Eytelwein), [3] relates the hold-force to the load-force if a flexible line is wound around a cylinder (a bollard, a winch or a capstan).
The equation used to model belt friction is, assuming the belt has no mass and its material is a fixed composition: [2] = where is the tension of the pulling side, is the tension of the resisting side, is the static friction coefficient, which has no units, and is the angle, in radians, formed by the first and last spots the belt touches the pulley, with the vertex at the center of the pulley.
This does cause frictional shear stresses in the contact area. In the final situation the bollard exercises a friction force on the rope such that a static situation occurs. The tension distribution in the rope in this final situation is described by the capstan equation, with solution:
Once the friction factors of the pipes are obtained (or calculated from pipe friction laws such as the Darcy-Weisbach equation), we can consider how to calculate the flow rates and head losses on the network. Generally the head losses (potential differences) at each node are neglected, and a solution is sought for the steady-state flows on the ...
The shear viscosity (or viscosity, in short) of a fluid is a material property that describes the friction between internal neighboring fluid surfaces (or sheets) flowing with different fluid velocities. This friction is the effect of (linear) momentum exchange caused by molecules with sufficient energy to move (or "to jump") between these ...
In fluid dynamics, total dynamic head (TDH) is the work to be done by a pump, per unit weight, per unit volume of fluid.TDH is the total amount of system pressure, measured in feet, where water can flow through a system before gravity takes over, and is essential for pump specification.
Date/Time Thumbnail Dimensions User Comment; current: 12:52, 8 May 2023: 512 × 539 (8 KB): Theosch: Added arrowhead in order to make clear that the curved line shows an angle and not direction of rotation.
Nikolai Pavlovich Petrov's method of lubrication analysis, which assumes a concentric shaft and bearing, was the first to explain the phenomenon of bearing friction.This method, which ultimately produces the equation known as Petrov's law (or Petroff's law), is useful because it defines groups of relevant dimensionless parameters, and predicts a fairly accurate coefficient of friction, even ...