Search results
Results from the WOW.Com Content Network
The vector component or vector resolute of a perpendicular to b, sometimes also called the vector rejection of a from b (denoted or a ⊥b), [1] is the orthogonal projection of a onto the plane (or, in general, hyperplane) that is orthogonal to b.
A projection on a vector space is a linear ... is an orthogonal projection onto the xy-plane. This function is represented by the matrix ...
Some authors [12] define stereographic projection from the north pole (0, 0, 1) onto the plane z = −1, which is tangent to the unit sphere at the south pole (0, 0, −1). This can be described as a composition of a projection onto the equatorial plane described above, and a homothety from it to the polar plane.
In either the coordinate or vector formulations, one may verify that the given point lies on the given plane by plugging the point into the equation of the plane. To see that it is the closest point to the origin on the plane, observe that p {\displaystyle \mathbf {p} } is a scalar multiple of the vector v {\displaystyle \mathbf {v} } defining ...
ρ is the length of the vector projected onto the xy-plane, φ is the angle between the projection of the vector onto the xy-plane (i.e. ρ) and the positive x-axis (0 ≤ φ < 2π), z is the regular z-coordinate. (ρ, φ, z) is given in Cartesian coordinates by:
The orthogonal projection of the eye point onto the picture plane is called the principal vanishing point (P.P. in the scheme on the right, from the Italian term punto principale, coined during the renaissance). [7] Two relevant points of a line are: its intersection with the picture plane, and
The projection of the point C itself is not defined. The projection parallel to a direction D, onto a plane or parallel projection: The image of a point P is the intersection of the plane with the line parallel to D passing through P. See Affine space § Projection for an accurate definition, generalized to any dimension. [citation needed]
The projected area onto a plane is given by the dot product of the vector area S and the target plane unit normal m̂: = ^ For example, the projected area onto the xy-plane is equivalent to the z-component of the vector area, and is also equal to = | | where θ is the angle between the plane normal n̂ and the z-axis.