enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Power of two - Wikipedia

    en.wikipedia.org/wiki/Power_of_two

    Visualization of powers of two from 1 to 1024 (2 0 to 2 10) as base-2 Dienes blocks. A power of two is a number of the form 2 n where n is an integer, that is, the result of exponentiation with number two as the base and integer n as the exponent. In the fast-growing hierarchy, 2 n is exactly equal to ().

  3. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    Graphs of y = b x for various bases b: base 10, base e, base 2, base ⁠ 1 / 2 ⁠. Each curve passes through the point (0, 1) because any nonzero number raised to the power of 0 is 1. At x = 1, the value of y equals the base because any number raised to the power of 1 is the number itself.

  4. Kummer's theorem - Wikipedia

    en.wikipedia.org/wiki/Kummer's_theorem

    In mathematics, Kummer's theorem is a formula for the exponent of the highest power of a prime number p that divides a given binomial coefficient. In other words, it gives the p-adic valuation of a binomial coefficient. The theorem is named after Ernst Kummer, who proved it in 1852 (Kummer 1852).

  5. Tetration - Wikipedia

    en.wikipedia.org/wiki/Tetration

    For example, 2 tetrated to 4 (or the fourth tetration of 2) is = = = =. It is the next hyperoperation after exponentiation , but before pentation . The word was coined by Reuben Louis Goodstein from tetra- (four) and iteration .

  6. Power of 10 - Wikipedia

    en.wikipedia.org/wiki/Power_of_10

    Where a power of ten has different names in the two conventions, the long scale name is shown in parentheses. The positive 10 power related to a short scale name can be determined based on its Latin name-prefix using the following formula: 10 [(prefix-number + 1) × 3] Examples: billion = 10 [(2 + 1) × 3] = 10 9; octillion = 10 [(8 + 1) × 3 ...

  7. Faulhaber's formula - Wikipedia

    en.wikipedia.org/wiki/Faulhaber's_formula

    Faulhaber's formula is also called Bernoulli's formula. Faulhaber did not know the properties of the coefficients later discovered by Bernoulli. Rather, he knew at least the first 17 cases, as well as the existence of the Faulhaber polynomials for odd powers described below. [2] Jakob Bernoulli's Summae Potestatum, Ars Conjectandi, 1713

  8. Euler's identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_identity

    The same formula applies to octonions, with a zero real part and a norm equal to 1. These formulas are a direct generalization of Euler's identity, since i {\displaystyle i} and − i {\displaystyle -i} are the only complex numbers with a zero real part and a norm (absolute value) equal to 1.

  9. Exponential function - Wikipedia

    en.wikipedia.org/wiki/Exponential_function

    Exponential functions with bases 2 and 1/2 The base of an exponential function is the base of the exponentiation that appears in it when written as ⁠ x → a b x {\displaystyle x\to ab^{x}} ⁠ , namely ⁠ b {\displaystyle b} ⁠ . [ 6 ]