Search results
Results from the WOW.Com Content Network
The best example of the plug-in principle, the bootstrapping method. Bootstrapping is a statistical method for estimating the sampling distribution of an estimator by sampling with replacement from the original sample, most often with the purpose of deriving robust estimates of standard errors and confidence intervals of a population parameter like a mean, median, proportion, odds ratio ...
Given an r-sample statistic, one can create an n-sample statistic by something similar to bootstrapping (taking the average of the statistic over all subsamples of size r). This procedure is known to have certain good properties and the result is a U-statistic. The sample mean and sample variance are of this form, for r = 1 and r = 2.
Sample sizes may be evaluated by the quality of the resulting estimates, as follows. It is usually determined on the basis of the cost, time or convenience of data collection and the need for sufficient statistical power. For example, if a proportion is being estimated, one may wish to have the 95% confidence interval be
The pps sampling results in a fixed sample size n (as opposed to Poisson sampling which is similar but results in a random sample size with expectancy of n). When selecting items with replacement the selection procedure is to just draw one item at a time (like getting n draws from a multinomial distribution with N elements, each with their own ...
Let a be the value of our statistic as calculated from the full sample; let a i (i = 1,...,n) be the corresponding statistics calculated for the half-samples. (n is the number of half-samples.) Then our estimate for the sampling variance of the statistic is the average of (a i − a) 2. This is (at least in the ideal case) an unbiased estimate ...
Although simple random sampling can be conducted with replacement instead, this is less common and would normally be described more fully as simple random sampling with replacement. Sampling done without replacement is no longer independent, but still satisfies exchangeability , hence most results of mathematical statistics still hold.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Schematic of Jackknife Resampling. In statistics, the jackknife (jackknife cross-validation) is a cross-validation technique and, therefore, a form of resampling.It is especially useful for bias and variance estimation.