enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Semiconductor device - Wikipedia

    en.wikipedia.org/wiki/Semiconductor_device

    The manufacture of semiconductors controls precisely the location and concentration of p- and n-type dopants. The connection of n-type and p-type semiconductors form p–n junctions. The most common semiconductor device in the world is the MOSFET (metal–oxide–semiconductor field-effect transistor), [1] also called the MOS transistor.

  3. Electron mobility - Wikipedia

    en.wikipedia.org/wiki/Electron_mobility

    For example, the same conductivity could come from a small number of electrons with high mobility for each, or a large number of electrons with a small mobility for each. For semiconductors, the behavior of transistors and other devices can be very different depending on whether there are many electrons with low mobility or few electrons with ...

  4. List of semiconductor materials - Wikipedia

    en.wikipedia.org/wiki/List_of_semiconductor...

    A compound semiconductor is a semiconductor compound composed of chemical elements of at least two different species. These semiconductors form for example in periodic table groups 13–15 (old groups III–V), for example of elements from the Boron group (old group III, boron, aluminium, gallium, indium) and from group 15 (old group V, nitrogen, phosphorus, arsenic, antimony, bismuth).

  5. High-electron-mobility transistor - Wikipedia

    en.wikipedia.org/wiki/High-electron-mobility...

    The invention of the high-electron-mobility transistor (HEMT) is usually attributed to physicist Takashi Mimura (三村 高志), while working at Fujitsu in Japan. [4] The basis for the HEMT was the GaAs (gallium arsenide) MOSFET (metal–oxide–semiconductor field-effect transistor), which Mimura had been researching as an alternative to the standard silicon (Si) MOSFET since 1977.

  6. Charge transport mechanisms - Wikipedia

    en.wikipedia.org/wiki/Charge_transport_mechanisms

    Generally, the carrier mobility μ depends on temperature T, on the applied electric field E, and the concentration of localized states N. Depending on the model, increased temperature may either increase or decrease carrier mobility, applied electric field can increase mobility by contributing to thermal ionization of trapped charges, and ...

  7. Strained silicon - Wikipedia

    en.wikipedia.org/wiki/Strained_silicon

    In 2000, an MIT report investigated theoretical and experimental hole mobility in SiGe heterostructure-based PMOS devices. [4] In 2003, IBM was reported to be among primary proponents of the technology. [5] In 2002, Intel had featured strained silicon technology in its 90nm X86 Pentium microprocessors series in early 2000. [5]

  8. BiCMOS - Wikipedia

    en.wikipedia.org/wiki/BiCMOS

    Some of the advantages of CMOS fabrication, for example very low cost in mass production, do not transfer directly to BiCMOS fabrication. An inherent difficulty arises from the fact that optimizing both the BJT and MOS components of the process is impossible without adding many extra fabrication steps and consequently increased process cost and reduced yield.

  9. 45 nm process - Wikipedia

    en.wikipedia.org/wiki/45_nm_process

    At the end of 2008, SMIC was the first China-based semiconductor company to move to 45 nm, having licensed the bulk 45 nm process from IBM. In 2008, TSMC moved on to a 40 nm process. Many critical feature sizes are smaller than the wavelength of light used for lithography (i.e., 193 nm and 248 nm).