enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Autoregressive integrated moving average - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_integrated...

    The "forecast" package in R can automatically select an ARIMA model for a given time series with the auto.arima() function [that can often give questionable results] and can also simulate seasonal and non-seasonal ARIMA models with its simulate.Arima() function. [16]

  3. These models are useful in modeling time series with long memory—that is, in which deviations from the long-run mean decay more slowly than an exponential decay. The acronyms "ARFIMA" or "FARIMA" are often used, although it is also conventional to simply extend the "ARIMA( p , d , q )" notation for models, by simply allowing the order of ...

  4. Autoregressive moving-average model - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_moving...

    Vector AR (VAR) and vector ARMA (VARMA) model multivariate time series. Autoregressive integrated moving average (ARIMA) models non-stationary time series (that is, whose mean changes over time). Autoregressive conditional heteroskedasticity (ARCH) models time series where the variance changes.

  5. X-13ARIMA-SEATS - Wikipedia

    en.wikipedia.org/wiki/X-13ARIMA-SEATS

    X-12-ARIMA can be used together with many statistical packages, such as SAS in its econometric and time series (ETS) package, R in its (seasonal) package, [6] Gretl or EViews which provides a graphical user interface for X-12-ARIMA, and NumXL which avails X-12-ARIMA functionality in Microsoft Excel. [7] There is also a version for MATLAB. [8]

  6. Autoregressive model - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_model

    Together with the moving-average (MA) model, it is a special case and key component of the more general autoregressive–moving-average (ARMA) and autoregressive integrated moving average (ARIMA) models of time series, which have a more complicated stochastic structure; it is also a special case of the vector autoregressive model (VAR), which ...

  7. Box–Jenkins method - Wikipedia

    en.wikipedia.org/wiki/Box–Jenkins_method

    The original model uses an iterative three-stage modeling approach: Model identification and model selection: making sure that the variables are stationary, identifying seasonality in the dependent series (seasonally differencing it if necessary), and using plots of the autocorrelation (ACF) and partial autocorrelation (PACF) functions of the dependent time series to decide which (if any ...

  8. Moving-average model - Wikipedia

    en.wikipedia.org/wiki/Moving-average_model

    In time series analysis, the moving-average model (MA model), also known as moving-average process, is a common approach for modeling univariate time series. [ 1 ] [ 2 ] The moving-average model specifies that the output variable is cross-correlated with a non-identical to itself random-variable.

  9. Exponential smoothing - Wikipedia

    en.wikipedia.org/wiki/Exponential_smoothing

    The default Expert Modeler feature evaluates all seven exponential smoothing models and ARIMA models with a range of nonseasonal and seasonal p, d, and q values, and selects the model with the lowest Bayesian Information Criterion statistic. Stata: tssmooth command [19] LibreOffice 5.2 [20] Microsoft Excel 2016 [21]