Search results
Results from the WOW.Com Content Network
The Sorgenfrey line can thus be used to study right-sided limits: if : is a function, then the ordinary right-sided limit of at (when the codomain carries the standard topology) is the same as the usual limit of at when the domain is equipped with the lower limit topology and the codomain carries the standard topology.
The cofinite topology on an infinite set is locally compact in senses (1), (2), and (3), and compact as well, but it is not Hausdorff or regular so it is not locally compact in senses (4) or (5). The indiscrete topology on a set with at least two elements is locally compact in senses (1), (2), (3), and (4), and compact as well, but it is not ...
Every compact space is σ-compact, and every σ-compact space is Lindelöf (i.e. every open cover has a countable subcover). [4] The reverse implications do not hold, for example, standard Euclidean space (R n) is σ-compact but not compact, [5] and the lower limit topology on the real line is Lindelöf but not σ-compact. [6]
For an ordered space (X, <) (i.e. a totally ordered set equipped with the order topology), the following are equivalent: (X, <) is compact. Every subset of X has a supremum (i.e. a least upper bound) in X. Every subset of X has an infimum (i.e. a greatest lower bound) in X. Every nonempty closed subset of X has a maximum and a minimum element.
The following is a list of named topologies or topological spaces, many of which are counterexamples in topology and related branches of mathematics. This is not a list of properties that a topology or topological space might possess; for that, see List of general topology topics and Topological property.
A three-dimensional model of a figure-eight knot.The figure-eight knot is a prime knot and has an Alexander–Briggs notation of 4 1.. Topology (from the Greek words τόπος, 'place, location', and λόγος, 'study') is the branch of mathematics concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling ...
Absolutely closed See H-closed Accessible See . Accumulation point See limit point. Alexandrov topology The topology of a space X is an Alexandrov topology (or is finitely generated) if arbitrary intersections of open sets in X are open, or equivalently, if arbitrary unions of closed sets are closed, or, again equivalently, if the open sets are the upper sets of a poset.
An example of T 0 space that is limit point compact and not countably compact is =, the set of all real numbers, with the right order topology, i.e., the topology generated by all intervals (,). [4] The space is limit point compact because given any point , every < is a limit point of {}.