Search results
Results from the WOW.Com Content Network
This is a list of two-dimensional geometric shapes in Euclidean and other geometries. For mathematical objects in more dimensions, see list of mathematical shapes. For a broader scope, see list of shapes.
Tessellations of euclidean and hyperbolic space may also be considered regular polytopes. Note that an 'n'-dimensional polytope actually tessellates a space of one dimension less. For example, the (three-dimensional) platonic solids tessellate the 'two'-dimensional 'surface' of the sphere.
Gaussian curve with a two-dimensional domain. Many shapes have metaphorical names, i.e., their names are metaphors: these shapes are named after a most common object that has it. For example, "U-shape" is a shape that resembles the letter U, a bell-shaped curve has the shape of the vertical cross section of a bell, etc.
Kites of two shapes (one convex and one non-convex) form the prototiles of one of the forms of the Penrose tiling. Kites also form the faces of several face-symmetric polyhedra and tessellations , and have been studied in connection with outer billiards , a problem in the advanced mathematics of dynamical systems .
Two congruent objects always have either the same shape or mirror image shapes, and have the same size. Objects that have the same shape or mirror image shapes are called geometrically similar, whether or not they have the same size. Thus, objects that can be transformed into each other by rigid transformations, mirroring, and uniform scaling ...
In order for this shape to be convex, both arcs must bow outwards (convex-convex). This shape can be formed as the intersection of two circular disks . It can also be formed as the union of two circular segments (regions between the chord of a circle and the circle itself), joined along a common chord.
In the extrinsic 3-dimensional picture, a great circle is the intersection of the sphere with any plane through the center. In the intrinsic approach, a great circle is a geodesic; a shortest path between any two of its points provided they are close enough. Or, in the (also intrinsic) axiomatic approach analogous to Euclid's axioms of plane ...
In geometry, a bigon, [1] digon, or a 2-gon, is a polygon with two sides and two vertices.Its construction is degenerate in a Euclidean plane because either the two sides would coincide or one or both would have to be curved; however, it can be easily visualised in elliptic space.