Search results
Results from the WOW.Com Content Network
Priority queue: A priority queue is an abstract concept like "a list" or "a map"; just as a list can be implemented with a linked list or an array, a priority queue can be implemented with a heap or a variety of other methods. K-way merge: A heap data structure is useful to merge many already-sorted input streams into a single sorted output ...
The heapsort algorithm can be divided into two phases: heap construction, and heap extraction. The heap is an implicit data structure which takes no space beyond the array of objects to be sorted; the array is interpreted as a complete binary tree where each array element is a node and each node's parent and child links are defined by simple arithmetic on the array indexes.
The Build-Max-Heap function that follows, converts an array A which stores a complete binary tree with n nodes to a max-heap by repeatedly using Max-Heapify (down-heapify for a max-heap) in a bottom-up manner.
95 characters; the 52 alphabet characters belong to the Latin script. The remaining 43 belong to the common script. The 33 characters classified as ASCII Punctuation & Symbols are also sometimes referred to as ASCII special characters. Often only these characters (and not other Unicode punctuation) are what is meant when an organization says a ...
Remove the last element from the heap and put it at the end of the list. Adjust the heap so that the first element ends up at the right place in the heap. Repeat Step 2 and 3 until the heap has only one element. Put this last element at the end of the list and output the list. The data in the list will be sorted.
In computer science, a min-max heap is a complete binary tree data structure which combines the usefulness of both a min-heap and a max-heap, that is, it provides constant time retrieval and logarithmic time removal of both the minimum and maximum elements in it. [2]
The d-ary heap consists of an array of n items, each of which has a priority associated with it. These items may be viewed as the nodes in a complete d-ary tree, listed in breadth first traversal order: the item at position 0 of the array (using zero-based numbering) forms the root of the tree, the items at positions 1 through d are its children, the next d 2 items are its grandchildren, etc.
Insertion sort is a simple sorting algorithm that builds the final sorted array (or list) one item at a time by comparisons.It is much less efficient on large lists than more advanced algorithms such as quicksort, heapsort, or merge sort.