Search results
Results from the WOW.Com Content Network
In any case, the context and/or unit of the gas constant should make it clear as to whether the universal or specific gas constant is being referred to. [ 10 ] In case of air, using the perfect gas law and the standard sea-level conditions (SSL) (air density ρ 0 = 1.225 kg/m 3 , temperature T 0 = 288.15 K and pressure p 0 = 101 325 Pa ), we ...
The table of specific heat capacities gives the volumetric heat capacity ... the most notable constant parameter is the ... gas: 14.30: 28.82: Hydrogen sulfide H 2 S ...
In the first, constant-volume case (locked piston), there is no external motion, and thus no mechanical work is done on the atmosphere; C V is used. In the second case, additional work is done as the volume changes, so the amount of heat required to raise the gas temperature (the specific heat capacity) is higher for this constant-pressure case.
In all, the higher heating value of hydrogen is 18.2% above its lower heating value (142 MJ/kg vs. 120 MJ/kg). For hydrocarbons, the difference depends on the hydrogen content of the fuel. For gasoline and diesel the higher heating value exceeds the lower heating value by about 10% and 7%, respectively, and for natural gas about 11%.
The SI unit of specific heat capacity is joule per kelvin per kilogram, ... and hydrogen gas are about 449 J⋅kg −1 ⋅K −1, ... R is the gas constant). Low ...
It is common, especially in engineering and meteorological applications, to represent the specific gas constant by the symbol R. In such cases, the universal gas constant is usually given a different symbol such as ¯ or to distinguish it. In any case, the context and/or units of the gas constant should make it clear as to whether the universal ...
R is the gas constant, which must be expressed in units consistent with those chosen for pressure, volume and temperature. For example, in SI units R = 8.3145 J⋅K −1 ⋅mol −1 when pressure is expressed in pascals, volume in cubic meters, and absolute temperature in kelvin. The ideal gas law is an extension of experimentally discovered ...
In other words, that theory predicts that the molar heat capacity at constant volume c V,m of all monatomic gases will be the same; specifically, c V,m = 3 / 2 R. where R is the ideal gas constant, about 8.31446 J⋅K −1 ⋅mol −1 (which is the product of the Boltzmann constant k B and the Avogadro constant).