enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kappa curve - Wikipedia

    en.wikipedia.org/wiki/Kappa_curve

    The kappa curve has two vertical asymptotes. In geometry, the kappa curve or Gutschoven's curve is a two-dimensional algebraic curve resembling the Greek letter ϰ (kappa).The kappa curve was first studied by Gérard van Gutschoven around 1662.

  3. Asymptote - Wikipedia

    en.wikipedia.org/wiki/Asymptote

    The graph of a function with a horizontal (y = 0), vertical (x = 0), and oblique asymptote (purple line, given by y = 2x) A curve intersecting an asymptote infinitely many times In analytic geometry , an asymptote ( / ˈ æ s ɪ m p t oʊ t / ) of a curve is a line such that the distance between the curve and the line approaches zero as one or ...

  4. Asymptotic curve - Wikipedia

    en.wikipedia.org/wiki/Asymptotic_curve

    The asymptotic directions are the same as the asymptotes of the hyperbola of the Dupin indicatrix through a hyperbolic point, or the unique asymptote through a parabolic point. [1] An asymptotic direction is a direction along which the normal curvature is zero: take the plane spanned by the direction and the surface's normal at that point. The ...

  5. Asymptotic analysis - Wikipedia

    en.wikipedia.org/wiki/Asymptotic_analysis

    An asymptote is a straight line that a curve approaches but never meets or crosses. Informally, one may speak of the curve meeting the asymptote "at infinity" although this is not a precise definition. In the equation =, y becomes arbitrarily small in magnitude as x increases.

  6. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    Diagonally opposite arms, one from each branch, tend in the limit to a common line, called the asymptote of those two arms. So there are two asymptotes, whose intersection is at the center of symmetry of the hyperbola, which can be thought of as the mirror point about which each branch reflects to form the other branch. In the case of the curve ...

  7. Truncus (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Truncus_(mathematics)

    The constant b translates the graph horizontally left b units when b > 0, or right when b < 0. The constant c translates the graph vertically up c units when c > 0 or down when c < 0. The asymptotes of a truncus are found at x = -b (for the vertical asymptote) and y = c (for the horizontal asymptote).

  8. Singularity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Singularity_(mathematics)

    In other words, the function has an infinite discontinuity when its graph has a vertical asymptote. An essential singularity is a term borrowed from complex analysis (see below). This is the case when either one or the other limits f ( c − ) {\displaystyle f(c^{-})} or f ( c + ) {\displaystyle f(c^{+})} does not exist, but not because it is ...

  9. Polynomial and rational function modeling - Wikipedia

    en.wikipedia.org/wiki/Polynomial_and_rational...

    Unconstrained rational function fitting can, at times, result in undesired vertical asymptotes due to roots in the denominator polynomial. The range of x values affected by the function "blowing up" may be quite narrow, but such asymptotes, when they occur, are a nuisance for local interpolation in the neighborhood of the asymptote point. These ...